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Abstract

Events in our everyday life are encoded as memories that can be consciously
recollected and remembered, although our ability to retrieve the specific details
associated with these events diminish with time. Such losses present itself as an
inability to distinguish between closely related events. Studying this phenomenon
requires development of sensitive tools and methods that can measure and follow
these changes at neuronal as well as behavioural scales. | have developed such
tools as a part of my thesis. Specifically, it is of interest to know how multiple
memories that share common content are organised in brain preserving their
identity especially when two such events occur closer in time.

First, we sought out to obtain a general method which distinguishes neurons that
took part in multiple temporally separated events by utilizing immediate early gene
expression kinetics. Immediate early genes (IEGs) are widely used as a marker for
neuronal plasticity. Here, we modelled the dynamics of IEG expression as a
consecutive, irreversible first order reaction with a limiting substrate. We showed
that such a model, together with two-photon in vivo imaging of an IEG-fluorophore
expression, can be used to identify distinct neuronal subsets representing multiple
memories. We imaged the retrosplenial cortex of cFOS-GFP transgenic mice to
follow the dynamic cellular changes resulting from contextual fear conditioning
(CFC) behaviour. The analytical expression allowed us to segregate the neurons
based on their temporal response to one specific behavioural event, thereby
improving the sensitivity of detecting plasticity related neurons. This enabled us to
establish representation of context in retrosplenial cortex at the cellular scale
following memory acquisition.

Secondly, we developed a sensitive measure to assess spatial memory retention
during learning and recall in Morris wate maze behaviour paradigm. Conventional
behavioural measures for testing hippocampal dependent memory in Morris water
maze involves comparing the residence time of the mice across different
quadrants. Such measures are inherently limited in their ability to extend the
behavioural task to discern out subtle deficits in memory. Here we used the velocity
vector field to describe the search pattern of the mice and develop quantitative
measures that are intuitive as well as sensitive to measure the degree of

impairment in the memory rather than just identifying if there is an impairment.



Lastly, we focused on developing a method to obtain fluorescence lifetime from
steady state measurements utilizing a conventional custom built two photon
imaging system. Fluorescence at optical saturation is a function of absorption cross
section and excited state lifetime. Ultrashort pulses used in multi-photon
microscopy/imaging/spectroscopy depletes the ground state population. This
depletion can be modeled and measured through steady state fluorescence. We
use this to establish a proof of principle application of measuring lifetime through

steady state fluorescence.
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CHAPTER 1

Introduction

Abstract

The phenomenon of memory is quintessential in shaping who we are through our
experiences. Memory acquisition, storage and retrieval are vital cognitive functions
that enable learning, adaptation, and survival. Years of research has developed
our understanding of the various types of memory and the brain regions associated
with its expression. As the research methods and techniques to study the
mechanisms under lying memory formation and expression evolved, our
understanding of memory phenomena improved. At the level of behaviour,
development of simple as well as complex memory tasks along with improvements
in assessing the behavioural readout, i.e. the quality or nature of the memory,
allowed the investigation of finer, precise questions about processes such as
memory generalisation and discrimination. Recently, the field of memory research
has seen an unprecedented effort in deciphering the neural correlates of memory
and learning using advanced molecular and optical techniques. The current
chapter provides a brief primer of the progress made in the field of memory

research.






1.1 Introduction

The phenomena of memory comprise a series of complex processes starting with
encoding, followed by consolidation, and finally retrieval of information. Over the
years, multiple memory systems have been identified based upon the involvement

of different brain regions in supporting different types of memories.
1.2 Historical perspective

Scientists have been searching for the structures and regions of the brain
responsible for learning and memory since the early 1800. The concept that
memory is not a unitary phenomenon but can be classified into different types
depending on certain criteria came about through various studies involving animal
models and human patients.

A key event in memory research was the identification of the hippocampus as an
indispensable brain region for making new memories of life-long events. The role
of hippocampus in memory encoding came from studying patients who had
undergone bilateral removal of medial temporal lobe. These patients who had their
hippocampal and para-hippocampal regions removed showed a specific type of
amnesia. They suffered from anterograde amnesia, i.e., the inability to form new
memories, while also showing graded retrograde amnesia. However, the
anterograde amnesia was specific to certain kinds of memory. While these patients
could not learn the name of their doctor or the hospital they were in, they were able
to learn new motor skills. That is, they lost the ability to learn any information that
required them to declare their experiences such as names of people and places,
whereas they retained the ability to learn procedural memories such as the ability
to mirror drawing. Findings from studying such amnesic patients, along with other
studies on animal models, led to the identification of different memory systems, as
described below.

Classification of memory based on the brain region required for encoding
categorises memory into declarative (explicit) and non-declarative (implicit) before
introducing further sub classes (Cohen and Squire, 1980). Declarative memories
are defined as the memories that can be consciously recalled. They are strongly
dependent on the hippocampus both for its acquisition and retrieval. These
memories have a strong component of “what, when and where” information, e.g.,

information involving events and facts, i.e., declarative memory is further classified



into episodic and semantic memory. Episodic memory or memory of an event is
linked to the context and time associated with it during acquisition. Semantic
memory is the memory of factual information. In many instances such a clear
classification may not be possible, e.g., autobiographical memory contains
components of both episodic and semantic memory.

On the other hand, non-declarative memory is unconscious memory that is
expressed through performance and acquired through procedural learning of skills
and habits. Apart from these procedural memories, memories associated with
priming, perceptual learning, classical conditioning, and non-associative learning
are thought to belong to this class. Figure 1.1 depicts the classification of memory
based on memory encoding and retrieval.

Another classification of memory system focuses on the time scales at which you

can disrupt the memory consolidation process. This is described in section 1.1.3.
1.3 Rodent models to study memory and learning

Although much of the evidence for memory classification came largely from human
studies, hippocampal-dependent tasks and the structures associated for its
behavioural expression were identified in rodents (Kim and Fanselow, 1992).

One such behaviour, the contextual fear conditioning (CFC) is a multimodal
memory task (Fig. 1.2 (A-C)). During training, rodents are taught to associate a
particular context (CS) with a footshock (US). Memory retention of this association
is tested by placing the rodent back into the training context and measuring its
freezing response (CR). The freezing response in rodents is an evolutionary
response to stressful situation which can be defined as cessation of all movements
except breathing.

Another commonly used behavioural paradigm to study hippocampal memory is
the Morris water maze. It is multiple trial spatial memory task where rodents are
trained to locate a hidden platform in a pool of water in relation to distal cues.
During training, rodents are made to swim in a pool filled with opaque water till
either the platform is found, or the trial duration ends (60-seconds). Over many
training sessions, the latency, or time taken, to reach the platform reduces,
indicating that the ability of rodent to locate the platform has improved (Fig. 1.2 (D-
F)). However, spatial memory is tested during probe trials where the platform is

removed from the pool. The rodent is made to search for the trial duration (60s),



and different measures are used to quantify the retention of spatial memory (See:
Chapter 5, Section 5.1).

In both CFC and MWM, the context-dependent memory in rodents consist of
representations derived from detailed somatosensory inputs, similar to the episodic
memory in humans. Additionally, since these memories have been shown to be
initially dependent on the hippocampus for its expression, they are deemed to be
episodic-like memories (Rosenbaum et al., 2001). Similarly, other hippocampal-
dependent memory tasks are used as a proxy for declarative memory in rodents,
e.g., social transfer of food preference (STFP), Barnes Maze, Flavour-Place
association task.

A major advantage of using rodents to study learning and memory is the
opportunity to design experiments to investigate causal relationships of brain
structures and behaviour manifestation. Vast improvement in molecular and optical
methods allow the visualisation and manipulation of neuronal activity in different
regions of the brain. For example, transgenic mice provide a valuable tool to study
molecular, cellular and network level mechanisms in the brain, as well as molecular
probes delivered through viral expression systems allow for relatively easy, precise

spatial and temporal manipulation of neuronal activity.
1.4 Memory consolidation

Consolidation of memory takes place over different time scales, i.e. cellular level
consolidation (6 - 24 hours) and systems level consolidation (months to years in
humans, weeks to months in mice) (McGaugh, 2000).

1.4.1 Cellular consolidation

Cellular consolidation refers to a set of molecular changes that alter the synaptic
strengths by remodelling existing synapses or by increasing synaptic contacts. The
stabilization of memory immediately after learning takes place within hours.
Evidence for the lability of the memory during initial stages came from studying the
effect of protein synthesis inhibitors on memory retention. Goldfish were trained in
a place aversion task using a tank with two arms for the goldfish to reside in,
connected by a thin tube for travel. In one arm, the goldfish were trained to
associate an aversive stimulus (Shock arm), whereas the alternate arm of the tank
was safe for residence. Immediately after training, the goldfish were injected with

puromycin intracranially to stop protein synthesis. During memory recall test, fish



administered with puromycin showed absence of place aversion memory
compared to control groups who reduced the amount of time spent in the shock
arm of the tank. Similar studies demonstrating the role of protein synthesis in
cellular memory consolidation have been shown in rodents as well. Thus, the
process of memory cellular consolidation of acquired memory is dependent on
protein synthesis and is labile before consolidation during the initial period of a few
hours.

1.4.2 Systems consolidation

Systems consolidation refers to memory taking representation and hence acquiring
the ability to be retrieved independent of hippocampus over weeks to months, i.e.,
the memory becomes resistant to lesion/loss of hippocampus. Along with evidence
from amnesic patients with damaged MTL (Scoviille and Milner, 1957), the graded
nature by which the memory becomes independent of the hippocampus in animal
models was shown by Kim and Faneslow (Kim and Fanselow, 1992). Rats
underwent CFC training to associate a shock (US) with a context A(CS). Different
groups had their hippocampus lesioned at different intervals of time from training
day. It was observed that the time of hippocampal lesions influenced the extent of
graded retrograde amnesia. Rats that underwent hippocampal lesions after 28
days showed memory retrieval comparable to the control animals, indicating that
the memory recall had become independent of the hippocampus (Fig. 1.3).

Standard Consolidation Theory

The Standard Consolidation Model (Squire et al., 1984) states that memories
acquire extra-hippocampal representations through repeated reactivation of the
hippocampal-cortical connections, either through recall of cues or by reactivation
of the memory during sleep. The reactivation leads to strengthening of connections
between the distributed cortical networks which makes the memory independent
of the hippocampus over time.

This is shown to be dependent on the hippocampus initially and becomes
independent of hippocampus during memory retrieval. Over time, different brain
regions are involved in the expression of the memory. It is thought to become less
dependent on the hippocampus over time and supported by a broad network of
cortical brain areas. This time dependent transfer of information from hippocampus
to cortical regions is known as systems consolidation (Fig. 1.4).

Multiple Trace Theory




An alternate model is the Multiple Trace Theory (MTT). MTT hypothesize that the
hippocampus plays a role in episodic, but not semantic, remote memory, i.e.
contextual memory is always dependent on the hippocampus for details whereas
semantic memories are independent of hippocampus after systems consolidation.
Evidence for remote memory dependence on the hippocampus comes from
optogenetics studies where inhibition of the hippocampus immediately before
testing remote memory retrieval affects the memory (Goshen et al., 2011) and
hippocampal inactivation impaired expression of specific but not generalized
memories (Wiltgen et al., 2010). Another study (Lesburguéres et al., 2011) showed
that inhibition of the cortical circuit within 24 hours after memory acquisition affects
the ability of the animal to retrieve the memory at a remote time point. This indicates
the role of the hippocampal-cortical circuit, and not just the role of hippocampus,
at the recent time point in formation/encoding of remote memories.

Multiple trace theory emphasizes the distinction between two types of declarative
memory, episodic and semantic, proposing that detailed episodic memory always
require the hippocampus for expression, whereas the standard theory maintains
that detailed episodic memories can become independent of the hippocampus over
time. The standard theory views memories as transferred from the hippocampus
to a stabilized cortical representation over time, freeing up the hippocampus for
encoding of new memories whereas the multiple trace theory emphasizes the
dynamic nature of a consolidated memory as detailed hippocampal
representations co-exist with generalized cortical representations. All these lines
of evidence point to the fact that the nature of memories encoded by the distributed
cortical trace or the hippocampal trace is different at a remote time point compared
to recent time.

1.4.3 Implications in memory discrimination and generalisation

As described above, the process of memory consolidation is susceptible to change.
Generalization of a memory refers to the loss of details of the memory over time.
In rodents, animals trained to associate context A (CS) with a footshock (US) can
clearly distinguish the training context A with a novel context B during memory
retrieval 24 hours later. However, if the animal is tested for memory recall at a
remote time point (30-days), they tend to show freezing in both the training context
A as well as a novel context B, i.e. the fear memory gets generalised to both

contexts over time.



Similar behaviour of memory generalisation is seen in Morris water maze task. In
the study (Richards et al., 2014), mice were trained in a modified water maze
paradigm where the platform was randomly placed around the mean of a spatial
distribution, but never at the mean. During probe trial one day post training, the
mice were able to recall where the platform was last placed during training
(measured by time spent in the platform area). However, 30-days post training, the
mice recalled a generalised memory of where the platform was placed. They spent
majority of the time at the mean of the platform distribution indicating generalisation
of platform locations utilised during training via pattern generalisation.

However, discrimination of contextual information is still possible at a remote time
point. In a related study using discrimination training, the animals are trained to
associate context A (CS) with a footshock (US) (shock context) as well as learn to
associate context B with the absence of footshock is given (safety context). The
sensory features of the context were modified such that the two contexts had some
overlapping similar features. These animals that undergo discrimination training
can clearly distinguish between context A as the shock context and context B as a
safety context, even during memory retrieval at a remote time point even after
hippocampal lesions. This suggests that cortical memory can retain specific
information, i.e., possess a detailed memory, depending on the training

parameters.
1.5 Neural correlates of memory

1.5.1 Engram

Memory Trace or Engram is an ensemble of neurons which might constitute the
physical representation of a memory. This concept was proposed by Richard
Semon in 1921 as the Engram Theory (Schacter et al., 1978). Learning induced
activation of a small ensemble of neurons results in persistent changes on the
neuron that stores the information. Reactivation of this ensemble by relevant recall
cues results in retrieval of the specific memory. The advancement in molecular
tools now allow us to label or tag the neurons that were activated during learning.
One study showed that the same neurons that were activated by exposure to a
novel context in the CA1 of the Hippocampus were reactivated when re-exposed
to the same environment (Guzowski et al., 1999). Another study employed

transgenic mice to enable differential tagging of distinct populations of activated
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neurons. Mice trained in fear conditioning showed that the same neurons in the
amygdala that were activated during learning also were activated during recall
(Reijmers et al.,, 2007). Development of optogenetics tools which allow to
manipulate the activity of neurons further verified that reactivation of tagged cells
manifested in the expression of a specific memory. When hippocampal neurons
activated during context fear conditioning were reactivated in a novel context, the
animals showed freezing response to a context it was never exposed to before (Liu
et al., 2012; Ramirez et al., 2013). Similar experiment was done in the retrosplenial
cortex (RSc) where reactivation of the neuronal ensemble was sufficient to induce

fear response (Cowansage et al., 2014).
1.6 Visualising neuronal activity and plasticity

1.6.1 Calcium or voltage activity

Imaging the changes in cellular calcium in individual neurons using a sensor is a
popular method of visualising neural activity. These sensors need to have high
sensitivity and respond rapidly to rise and decay in cellular calcium. A popular
group of calcium sensors are the genetically encoded calcium sensors or GECls.
It confers the advantage of genetic manipulation within an organism to allow its
spatio-temporal expression. GCaMP is one such GECI, (Nakai et al., 2001) a
fusion protein of green fluorescent protein (GFP) and the calcium being domain of
calmodulin. As a result of calcium binding to the calmodulin domain, a
conformational change takes place in the protein which results in increase in the
fluorescence of GFP. Improvements made possible through molecular engineering
has led to the development of a range of GECIs that cover a wider excitation
spectrum, improving depth resolution in vivo imaging.

1.6.2 Immediate Early Gene (IEG) expression

A different approach to investigating behaviourally relevant neuronal activity
utilizes cellular changes resulting in plasticity. Synaptic signals received by the
neuron need to be translated into long-term plasticity in the neuronal circuit.
Immediate early genes or IEG are rapidly and transiently expressed following
neuronal stimulation. Its expression is tightly correlated with synaptic plasticity. The
function of IEGs ranges from acting as growth factors, structural proteins, signal
transduction molecules to being transcription factors that affect gene expression.

It has a supposed role in stabilizing recent changes in the synaptic efficacy
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(Lanahan and Worley, 1998).

IEGs are used as activity markers for mapping neuronal circuits activated in a
particular behaviour. It provides a tool to determine the involvement of various brain
regions in encoding a behaviour. The specificity of the expression for a given
memory becomes difficult as stress and arousal also lead to its expression.
However, with the ability of in vivo imaging and by maintaining a controlled
environment we can overcome this problem as it allows us to investigate the same
animal at different time points.

Arc

Activity-regulated cytoskeleton-associated protein (Arc) is a structural protein that
is localized to the dendrites. Disruption of Arc impairs the maintenance phase of
LTP and consolidation of long-term spatial memory (Guzowski et al., 2000). The
kinetics of Arc mRNA are such that a few minutes after activation it is localized in
the nucleus as intense foci, while 30 minutes later it has accumulated in the
cytoplasm and dendrites of the cell (Guzowski et al., 1999).

cFos

cFos was one of the first IEGs to be identified. It was previously identified as a
proto oncogene which suggests its regulatory role in the cell cycle (Sheng and
Greenberg, 1990). Characterization of cFos activation in neuronally differentiated
P12 cells demonstrated that it is induced in response to depolarizing conditions
mediated through voltage gated calcium channels (Morgan and Curran, 1986). The
first demonstration of cFos expression in vivo was shown in response to
pentylenetetrazol (PTZ), a gamma-Aminobutyric acid (GABA) antagonist that
causes seizures in mice (Dragunow and Faull, 1989). Seizures produced
widespread cFos expression throughout the hippocampus, basal forebrain and
cortex with mRNA levels peaking 60 minutes and protein levels peaking 90 minutes
following seizure induction (Morgan et al., 1987). Normal forms of cell stimulation
such as visual sensory stimulus and whisker stimulation induced cFos expression
in the suprachiasmatic nucleus (Aronin et al., 1990) and the somatosensory cortex
(Mack and Mack, 1992) respectively. In mice, contextual fear conditioning induced
peak levels of Fos protein in regions throughout the brain 60 to 90 minutes following
learning (Strekalova et al., 2003). To study the role of cFOS in memory, a global
cFOS knockout mouse was generated. The mice were viable, but their phenotype

showed lack of tooth eruption, altered haematopoiesis and small size in
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comparison with wild-type littermates (Wang et al., 1992). On training in spatial
memory, these mice showed severe impairments in the hidden version of the water
maze as well as the visible (nonhippocampal) version of the water maze. Thus, in
the global knockout, the developmental deficits were too strong to delineate any
specific effect on memory. To circumvent this, two conditional cFos knockout mice
lines were generated that ensured the removal of cFOS gene in the brain and not
the entire body. The first line was created by crossing a transgenic mouse with
floxed cFos gene with a Tg mouse expressing Cre recombinase under CaMKI|
promoter (Tsien et al., 1996). In this cFos conditional knockout, the knockout effect
was limited to the hippocampus. Only when the mice were trained using an intense
protocol for water maze did they showed normal spatial memory. The second
conditional knockout was generated by crossing a Tg mouse with floxed cFOS
gene with a Tg mouse expressing Cre recombinase driven by the nestin promoter,
thus both neurons and glia lacked cFos gene in this Tg mice. These mice showed
spatial memory deficits using a less intense training protocol in the water maze
(one trial per day for 11 days) and showed deficits in long term memory for
contextual fear conditioning (Fleischmann et al., 2003). Disruption of cFos function
using antisense oligonucleotides in the hippocampus also resulted in impaired
spatial memory in the water maze. It had no effect on short-term spatial memory
but did affect long term memory (Guzowski, 2002). The above suggests that cFos
may play a general role in coupling stimulation to long-term changes in gene
transcription required for plasticity changes in the neuron. Thus, activation of cFos
could serve as a potential marker for identifying the neurons encoding the

information.
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1.7 Figures

Long-term memory
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Figure 1.1: Classification of memory into different types based on brain region responsible
for memory acquisition. Long-term memories are broadly classified into explicit or declarative and
implicit or non-declarative memories. Declarative memories rely on the medial temporal lobe
(hippocampal and para-hippocampal regions) for encoding information. Non-declarative memories
are of different types as mentioned in the schematic (brain region responsible for encoding

information is mentioned in grey box). Adapted from (Squire and Zola, 1996).
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Figure 1.2: Behavioural tasks used to study hippocampal-dependent memory in rodents.
(A) Schematic describing the behaviour paradigm for contextual fear conditioning (CFC). Rodents
are made to associate a particular context to a mild foot shock through exposure to a training context
A (conditioned stimulus, CS) for 1min 30s, followed by a 0.7mA shock for 2 seconds (unconditioned
stimulus, US) (Top). To assess memory retention, the rodents are placed into the training context
A for a duration of 2min 30s without administering the US (Bottom). The amount of freezing is a
proxy for memory retention as explained in (C).

(B) An example of a chamber used for contextual fear conditioning: context ‘A’ is defined by features
such as light (visual), regularly spaced grids (tactile), and 70% ethanol (odour).

(C) Freezing is an evolutionary response to threat in absence of an escape route. It is defined as
cessation of all movements except breathing. Quantifying freezing manually or through an
automated software provides a measure of memory for the context.

(D) Schematic describing the behaviour paradigm for Morris water maze (MWM). Rodents are made
to learn the location of a hidden platform (white circle in bottom left quadrant of the pool) in relation
to distal cues (black circle, purple triangle, and red star). Usually, each training session or day
consists of 4 trials. To test the presence of spatial memory for the platform, a probe test.

(E) A video frame from a training session shows the mouse on the platform located in a water maze
pool. BALBc mice on the platform is indicated with a red arrow.

(F) Occupancy measured in each quadrant acts as a measure for spatial memory of the platform.
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Figure 1.3: Evidence for systems consolidation in rodents.
(A) Schematic showing the experimental groups of rats used for behavioural paradigm.

(B) Hippocampus lesioned group of rats (Hpc lesion, orange) show graded memory retention as a
function day of lesioning.

Adapted from (Kim and Fanselow, 1992; Frankland and Bontempi, 2005).
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Figure 1.4: Standard model of systems consolidation. (Meenakshi and Balaji, 2017).
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CHAPTER 2

Aim and scope

Investigating the mechanisms operating at the scale of synapses, neuronal
ensembles, and neural circuits is an area of intense focus in the field of learning
and memory. The development of optical tools to investigate the changes at these
cellular and sub-cellular scales enables us to ask finer, nuanced questions and
obtain a deeper understanding of the underlying process. As discussed in the
introduction, despite the work done to establish and understand systems
consolidation, there is more to uncover regarding how and why memories change
during this process. For example, are there changes at the ensemble level which
result in the generalization of memory? Are the inputs received at the cortex
sparse, or does the memory encoding in the cortex become sparse during systems

consolidation?

In addressing such questions involving multiple memories, it is vital to identify and
follow specific neuronal ensembles that might encode similar memories during
systems consolidation longitudinally. One of the key objectives of the current

project is developing such a method at the neuronal level.
2.1 Specific Aim 1: Optical tools

The working hypothesis of this aim is that the memory engram of multiple events

can be identified using an immediate early gene's expression dynamics.

Here, we propose to follow the kinetics of an IEG expression in vivo to identify
distinct neuronal subsets. The rationale is to use the kinetics of expression to
estimate when the neuron's activity was induced. In the case of an IEG promoter
tagged with a fluorophore, the kinetics can be followed by measuring the
fluorescence as a function of time. Observing the fluorescence of individual
neurons and describing its expression dynamics analytically, we can distinguish

between neurons that took part in events that are separated in time.
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Working towards this aim, we first derived the equation to describe the IEG
expression kinetics. Next, we validated the model using fluorescence data obtained
from cFOS-EGFP and cFOS-shGFP transgenic mice (Chapter 3). Lastly, we utilize
the method to look at the contextual representation of dual context exposure in the

retrosplenial cortex region of cFOS-shGFP transgenic mice (Chapter 4).

2.2 Specific Aim 2: Behavioural tools

We aim to develop sensitive measures to probe for spatial memory deficits in a

navigational task such as the Morris Water Maze.

Here, we propose to utilize vector field properties as a proxy for spatial memory
retention. We rationale that divergence and curl maps of a velocity vector field

indicate the mouse's search centre and area.

Working towards this aim, we developed measures using velocity vector along an
occupancy centre and its vector field properties to define spatial memory in terms
of three components that are independent of each other: accuracy, uncertainty,
and intensity of search (Chapter 5). We were able to establish and utilise the
measures to compare the performance of different strains of mice (Chapter 6).
Then we extend this to study spatial memory deficit in Noonan syndrome mice

models (Chapter 7).

2.3 Specific Aim 3: Molecular probes

While Specific aim 1 addresses the information stored at a cellular resolution, a
different approach is required to investigate the changes in the strength of
connections between neurons in a network, i.e., the intra- and inter-connectivity.
Intra-connectivity refers to the connections between neurons in an ensemble,
whereas inter-connectivity refers to the connections between neurons across

different ensembles.

To quantify the connectivity between neurons, we propose to modify the technique

of simultaneous optogenetic activation of targeted cells and two-photon calcium
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imaging. Simultaneous optogenetic activation and two-photon calcium imaging can
be done by co-expressing a Channelrhodopsin (C1V1) and genetically encoded
calcium indicators (GCaMP6f) under the CaMKIl promoter. Channelrhodopsin
allows for activation of the neuron, whereas calcium imaging acts as a readout for

connection strength.

Towards this goal, a construct containing C1V1 along with GCaMP6f has been

cloned into an AAV vector, as well as packaged into AAV virus (Appendix B).

Additionally, neuronal marker/filler probe, CaMKII-tdTomato was cloned into AAV

vector and packed into AVV virus to visualize the complete neuronal structure.
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CHAPTER 3

Novel method to identify and segregate different populations
of neurons using expression dynamics of an immediate early

gene

Abstract

Identifying neurons that are activated in response to memory acquisition and
retrieval is vital to understand the molecular and cellular mechanisms of memory
processes. Rapid and transient expression of Immediate Early Genes (IEGs) occur
in response to persistent neuronal activity and hence IEGs are used as markers of
plasticity. We propose to follow the kinetics of IEG expression in vivo to identify
neuronal subsets, each corresponding to distinct events. First, we derived an
analytical description for the expression dynamics of an IEG protein as a function
of time. The resultant rate equation describing the concentration of protein as a
function of time has an analytical form corresponding to the difference of two
exponential terms. In case of a fluorophore expressed under an IEG promoter, the
kinetics can be followed by measuring the fluorescence as a function of time. Next,
we validated the model using data obtained from two transgenic mouse strains:
cfos-eGFP and cfos-shGFP. We showed that cfos-GFP induced in response to
seizure as well as behaviour (context retrieval) is well described by the analytical
expression. Thus, we show the expression can be generalised to any IEG-
fluorophore protein expression kinetics since the fluorescence signal as a function
of time is well described by the derived analytical expression, irrespective of the

transgenic mice used.
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3.1 Introduction

Identifying and manipulating the neuronal ensembles of memory acquisition and
retrieval as well as understanding the changes occurring in the circuits over time
has been a major focus of memory research(Cajal, 1888; Josselyn et al., 2015;
Josselyn & Tonegawa, 2020; Richards & Frankland, 2017). Immediate early genes
are rapidly and transiently expressed in response to neuronal activity and hence
used as a marker for plasticity. Generally, to identify the temporal coupling of IEG
expression to different behaviours or events, it requires as many distinct molecular
labels as the number of events that are being followed.

Cellular compartment analysis of temporal activity by fluorescent in situ
hybridization (catFISH) (Guzowski, 2002; Guzowski et al., 1999; Guzowski &
Worley, 2001) initially exploited the unique transport kinetics of Arc mRNA from the
nucleus to the cytoplasm, and later improved to exploit the intronic regions of Arc
that have faster kinetics along with other IEGs such as Homer (Wiltgen et al.,
2010), to dissect the temporal engagement of neurons. Despite such
improvements the method is limited to in vitro identification. Another technique
uses a combination of IEG promoter-based expression and a modified Tet-OFF
system to achieve the labelling of two distinct populations of neurons (Reijmers et
al., 2007). In both cases, the visualisation of the signal is done post hoc in vitro,
limiting the investigation of the neuronal population to a snapshot at any given time.
Such methods cannot follow an ensemble of neurons and observe their evolution
longitudinally.

Neuronal activity indicators such as genetically encoded calcium or voltage
indicators (GEClIs or GEVIs) are reporters of neuronal firing in sub-millisecond time
scales (Knopfel, 2012; Lin & Schnitzer, 2016). However, they do not necessarily
report the plastic events that occur in response to these firings. Further, they
require high-speed imaging with temporal resolution matching the indicators'
response time, requiring the imaging be done on awake behaving mice. The slow
kinetics of IEG expression enable following cellular plastic events in anesthetised
mice after behavioural training(Attardo et al., 2018; Vania Y. Cao et al., 2013; Vania
Yu Cao et al., 2015; Wang et al., 2006).

Here, we propose to follow the kinetics of IEG expression in vivo to identify distinct
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neuronal subsets, each corresponding to distinct events. First, we analytically
describe the IEG protein expression dynamics as a function of time. In case of a
fluorophore expressed under an IEG promoter, the kinetics can be followed by
measuring the fluorescence as a function of time. Among the various IEGs, cfos
expression is a widely used marker for cellular activity (Dragunow & Faull, 1989).
We validate our model using data obtained from cfos-eGFP (Barth et al., 2004) and
cfos-shGFP (Reijmers et al., 2007) transgenic mice under two conditions:
bicuculline-induced seizure and behavioural induction of IEG following contextual
exposure. Following this, the kinetics of IEG-fluorescence expression is used to
determine when the neuron was activated, enabling us to distinguish between
neuronal populations that took part in different events that are separated in time.
Thus, we hypothesize that the memory engram of multiple events can be identified
using the expression dynamics of an immediate early gene and experimentally

show that we can do so for two events.
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3.2 Theory: Expression dynamics of an immediate early gene

3.2.1 Analytical description of IEG expression dynamics:

In order to model IEG expression kinetics in a neuron, we assumed that a pool of
mMRNA is present, that is translated to protein in response to behaviourally relevant
neuronal activity or signal (Greenberg et al., 1986; Saha et al., 2011). In response
to a signal, mRNA (A) is converted to protein (B) with a forward rate constant of
protein formation (ks). One of the marked features of IEG proteins is their auto
degradation resulting in transient expression. As the protein forms, ubiquitination
degrades the protein. We assumed such a reaction to be first order in protein
formation with a degradation rate constant of (ks). Thus, the IEG expression

kinetics can be considered as consecutive first-order reactions (Fig. 3.1 (A)).
A i B & C

where A is the concentration of the substrate for protein synthesis, B represents

the number of protein molecules and C is that of the degraded products.

Given the first order nature of the reaction we proceeded to write the rate equations

for A and B as follows,

d[A]

ac - W
d[B]
7 = kf[A] - kd[B]

We solved the above coupled differential equations to obtain the number of protein
molecules ([B]) that is expressed transiently. We proceeded by solving for B in the

Laplace space. Thus, using Laplace transform on the equations above we get,

f°° dA(t)
0

dt e_Stdt = —ka

©dB(t) _, _ -
j;) 76 dt = ka — k4B
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which can be reduced to the below equations,
—A(0) + sA(s) = k¢ ...(i)
—B(0) + sB(s) = keA(s) — kqB(s) ...(ii)

where A(0) is the maximum substrate concentration per signalling event. B(0) is
the concentration of B at time t = 0, hence B(0)= Bo. Rearranging equation (i), we
get the value of A(s)

~ A0
A(S):S'i('lzf

Using this in equation(ii) and rearranging for ~B(s), we get,

_ A(O)kf + B(0)
- (s+kf)(s+kd) (S+kd) ’

B(s) .. (iii)

At this stage we have several possibilities for B(0), each corresponding to a

different and unique physical scenario as discussed in special cases.

Equation (iii) represents the number of IEG molecules in the Laplace space. Using

partial fractions and obtaining the inverse Laplace transform, we have,

Ayk
B(t) =ko—f(e—kdt_ e~rt) + B(0)e ket
—ka

f

A fluorescence signal (F(t)) from a sample is proportional to the number of
molecules (B(t)). Using the quantum efficiency (¢r), the absorption cross-section of

the fluorophore (ea) and the collection efficiency (Cs). we can write,

For a given imaging system, the fluorescence signal (F(t)) is directly proportional

to the number of molecules present at any given time (B(t)).

Thus, the equation can be rewritten as,

F(t) = [,i"_—",;(e-kdf— ekrt) + B(O)e-kdt] ...Eq. 3.1
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or F(t) = [% (e~Hat — e'kft)] for B(0)is zero

or F(t) = |=2%L (qe~kat — e=krt) [for B(0) is a non-zero constant.
kf—kq

Using a similar approach, we generalised the equation for fluorescence expressed
in a neurons in response to ‘n’ multiple activation events that are ‘t4¢' time units

apart, as follows:

EF,(t) =2 Fi(t — (1— Dt )H

. 0, t< ty
("1)”{ 1, t2t,

In case of a double activation event, the equation simplifies to:

0, t<t

where tq is the time of the second activation event or signal.
3.2.2 Special cases:

We consider some special cases where the following physically relevant scenarios

present as modifications to Eq. 3.1.

Case i) B(0) is constant :

There is a background, non- zero, steady-state expression of IEG-fluorophore
protein fluorescence which is represented by B(0) = constant. We note that this
case requires the frequency of the stochastic activity to be such that the protein
production and decomposition lead to a quasi-steady state. The corresponding

final expression for this case is given by,

Ak
F(t) = |[—L- (aekat — gkst)
kf — Kq

where the co-efficient of the exponent representing the decay is modified but

overall functional form largely remains unchanged.
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Case ii) Stochastic activity:

First, we note that stochastic activity induced expression and decay is not any
different from event induced expression when the frequency of activation is sparse.
Case (i) represents a scenario where the frequency is high leading to a steady
state expression. In these cases, the cell will fit to single or double activation profile

with stochastic event response being one of the components.

Case (iii) Decay due to cellular decomposition/photobleaching:

Decomposition or photobleaching related responses do not have a formation
component. Our analysis in terms of classifying the cells based on activation profile
does not assume the nature of fluorescence decay. This could arise from cellular
degradation or photobleaching or any other time dependent process. So, in
principle our expression would cover any such decay as long as the defining
parameters (such as incident intensity) are kept constant during the experiment.
Thus, such a decay would reflect as modified value for kq but not affect or alter the
functional form of the resulting equation. Further, it has been shown that the time
scales (Kumar et al., 2016) at which the photobleaching affects the fluorescence
intensity (i.e., milliseconds) is longer than the pixel dwell time that we have used
for imaging (4ps). Additionally, experimental evidence shows that photobleaching

did not affect the fluorescence signal.

Thus, all the cases discussed above do not alter the final expression in terms of
the functional form but do modify or alter the meaning of some of the parameters.
Thus, a method that does not rely on the value of the kinetic parameters but utilises
the functional form to test if the cellular response conforms to it (i.e., the fit) would

be able to classify the cells relatively free of confounds.
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3.3 Results

3.3.1 Consecutive first-order kinetics describes IEG protein expression

following seizure induced by bicuculline administration.

We investigated whether the derived analytical expression (Section 3.2 and Fig.
3.1) describes IEG protein expression in vivo in cfos-eGFP transgenic mice. In
these mice, eGFP is expressed under the cfos promoter where the level of
fluorescence indicates the cfos protein concentration in the nucleus of the neuron.
We used these mice to study the expression kinetics of cfos in response to seizures
via bicuculline administration(Morgan et al., 1987). Immediately after the seizure,
mice were subjected to in vivo imaging of the RSc as a function of time (Fig. 3.2
(A)). All throughout this time series image acquisition, we ensured that the imaging
setup parameters, namely the incident power (30 mW), pulse width (~100 fs),
excitation wavelength (900 nm), and gain of the detection system were kept
constant. This resulted in a four-dimensional image stack consisting of three spatial
and one temporal dimension. The image stack showed cfos-eGFP fluorescence as
circular concentrated regions of higher intensities spread across the field of view.
Figure 3.2 (B) shows a time series of cfos-eGFP fluorescence produced in

response to seizure in the RSc.

Since we waited for the seizure to complete before anesthetising the mice and
shifting it to the head-fixed stage for in vivo imaging, our first imaging time point
was at 60 mins. We acquired images every 10 minutes for a total duration of 180
minutes from bicuculline administration. The fluorescence from these individual
nuclei were identified as circular ROls which decay to baseline values as a function

of time.

The fluorescence values from these cells were extracted as explained in Methods
(Fig. 3.3). For each imaging time point, the identified ROls were loaded and
recentred based on the centre of mass to correct any misalignment among images
of different time points. Thus, the coordinates of the measurement ROls are shifted
rather than aligning the entire image (See Materials and Methods, Fig. 3.4). This
enabled us to measure the fluorescence intensity using the directly observed raw

intensity values without having to align the images using image registration
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methods. These fluorescence values were then used to obtain the cellular
responses/activity as a time series. These values were then fit to the Eq. 3.1. Fig.
3.2(C) shows the cellular activity profile of four representative cells and their fit to

Eq. 3.1 in response to seizures with the fit parameters provided in Table 3.1.

3.3.2 Mice associate a mild footshock to a specific context when trained in

contextual fear conditioning.

Transgenic mice were trained and tested along with wildtype littermates (n=6) as
mentioned in methods section. Briefly, the animals were trained in context A and
made to recall the context 24h later. The freezing measured during the pre-shock
period on the training day served as a baseline response. Memory for the training
context was assessed through freezing behaviour. We saw an increase in freezing
response during retrieval 24 hours after training in context A (Fig. 3.5). Baseline
freezing was near zero before training whereas during retrieval the mice showed a

mean freezing of 27%.

3.3.3 Consecutive first-order kinetics describes IEG protein expression

following a behavioural event.

Next, we investigated whether the derived analytical expression describes IEG
protein expression in vivo in two strains of cfos-GFP transgenic mice in response
to context exposure. Immediately after context exposure, mice were subjected to
in vivo imaging of the RSc as a function of time (Fig. 3.6(A)). Our imaging time
points ranged from 20 to 280 minutes. Typically, these images were ~10 minutes
apart during the initial phase and later adjusted to capture the slower decline in
fluorescence with minimal number of image acquisitions. We note that long
periods of anaesthesia can alter the IEG expression. However, we limited the
duration of each anaesthesia administration to 180 mins (except for one mouse
where the administration lasted for 280 mins). Further we also note that IEG
expression profile induced by constant presence of anaesthesia will have different

time profile compared to a profile triggered by distinct behavioural event.

Similar to the images of cfos induced via seizure, the resulting images show cfos-
eGFP fluorescence as circular concentrated regions of higher intensities spread

across the field of view. Figures 3.6(B) and 3.7(A) show a representative snapshot
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of cfos-eGFP and cfos-shGFP fluorescence image of RSc respectively.

The temporal profile is consistent in behaviourally induced cfos expression similar
to seizure induced cfos expression. The fluorescence from these individual nuclei
identified as circular ROIs increase initially, reaches a peak, and then decays to
baseline values (Fig. 3.6(C)). The fluorescence response from few representative
cells as a time series is presented in Figures3.6(C) and 3.7(B). The fluorescence
values from these cells were extracted as described in the Section 3.3.1. We
employed the above procedure in two different sets of mice: cfos-eGFP and cfos-
shGFP. In both these cases, we extracted and used the fluorescence to obtain the
cellular activity profiles and fit to equation 3.1. Figure 3.6(D) shows the cellular
activity profile (open circles) and their fits (solid line) of four representative neurons
of cfos-eGFP transgenic mice in response to context exposure. Similarly, Figure
3.7(C) shows the fit of fluorescence obtained from neurons of cfos-shGFP mice.

The fit parameters are provided in Tables 3.2, 3.3 respectively.

3.3.4 Consecutive first-order kinetics can be generalized to protein

expression kinetics of an IEG-fluorophore construct.

We saw a good agreement of our model with the observed data. Since adjusted R-
square (Adj. R Sq) estimates the quality of a fit, we used this in our analysis to
estimate the fraction of cells that fit with an Adj. R Sqg. > 0.5. We saw that of the
2527 number of ROIs identified as cells from five mice, ~75 % of the cells shows a
fit with an Adj. R Sq. greater than 0.5. A good agreement of the experimental data
with our model in both these mice lines following seizure as well as the behavioural
activation suggests that our method can identify the neuronal ensemble that
represents activation, thus enabling us to use this as a criterion for identifying a
cell that got activated. Further, the fluorescence signal as a function of time is well
described by the analytical expression irrespective of the transgenic mice used.
Thus, it supports the hypothesis that the analytical equation can be generalised to

the protein expression kinetics of other IEGs (e.qg., arc, zif).

3.3.5 Distribution of fit parameters demonstrates that the rise kinetics are

identical for cfos-eGFP and cfos-shGFP expression.

The ROIs of successful fits and their fit parameters (describing the rate of
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formation(kr), decay(kd) and extent of activation (Ao)) were used for data analysis.
We obtained the histogram of these rate constants and fit to normal distribution to
estimate the mean values of these rate constants as described in Figure 3.8. In
case of decay constant ka we see a bimodal distribution (verified through Akaike's
Information Criteria (AIC)(Akaike, 1974)) and we report both the decay constants
in Table 4.

From these values, we estimated the rise time and decay of the cfos-eGFP
fluorescence following seizure or behaviour induced activation to be 1/kf =27 + 3
mins and 1/ka = 200 + 28 mins (taking the faster component from Table 4),
respectively. We used these rise and decay times to arrive at the sampling interval
for further experiments. Similarly, cfos-shGFP expression following context
exposure yields a rise and decay time of 1/ks = 27 mins and 1/kd = 16 mins (taking
the faster component from Table 4), respectively. The faster component of decay
constant is an indicator of how quickly the generated protein degrades. As
expected, we see that the rise kinetics are identical for both these constructs

considering the fluorophore is expressed under a cfos promoter.

During this process, we observed that some of the cells have an overlapping kr and
kd values with high interdependency. We believe this is due to a difference in start
time (when the cell got activated), resulting in a lower density of data points for a
reliable estimate of the kr, rather than the lack of fit. We included some of these cell

responses (Please see footnote of Table 3).

Thus, we found the time to maximal activation estimated from Eqg. 3.1 using the
mean ks and kq values is different for cfos-eGFP (74.5 £ 0.7 mins) and -shGFP mice
(41 £ 1 mins); in accordance with the genetic makeup of the mice and the
properties of the transgene. In cfos -eGFP, the transgene is the fusion of eGFP
and cfos protein, while in the cfos-shGFP just the GFP protein is expressed under
cfos promoter. We note that these estimates of time to peak are different than what
has been estimated from conventional studies. However, these estimates from
conventional studies are not comparable to our estimates as further elaborated in
the discussion section. Given a good fit of the cfos activation data, next we asked
if we could use such a model to predict expression of cfos that occurs during

memory formation, thereby enabling identification of neuronal ensemble that took



part in representation of memory.

3.4 Discussion

In summary, we derived an analytical equation to describe the expression profile
of an IEG protein assuming irreversible, consecutive first-order reactions for protein
formation and decay. We showed that the analytical expression can be extended
to describe the expression profile in response to multiple activations of a neuron,
e.g., double activation event. We validated the expression using two IEG-
fluorophore transgenic strains of mice, i.e., cfos-eGFP and cfos-shGFP.
Specifically, we showed that IEG protein expression profile, in response to seizure
or context exposure behaviour, fits well to the analytical expression. In the process,
we devised a method to classify neurons based on the number of times it was
activated. Thus, we could follow the IEG protein expression dynamics to identify
and segregate the activation of neurons into different groups based on the number
of times a neuron was activated.

Since our method utilised the temporal profile of IEG expression, as opposed to
intensity threshold, for identification, segregation, and classification of neurons, we
could increase the specificity with which we identify behaviourally relevant neuronal
ensembles, i.e., expression profiles that are temporally linked to behavioural start
time.

Interestingly, we found cfos protein's maximum expression takes place around ~74
mins for fos-eGFP transgenic mice, and ~40 mins for fos-shGFP transgenic mice.
These differences are consistent with shGFP having a shorter half-life. Previous
studies report cfos expression peaks between 90-120 minutes for protein as
detected by immunocytochemistry (IHC) analysis (Barth et al., 2004; Morgan et al.,
1987). While we measured the cfos fluorescence in these mice and thus report the
peak protein expression directly, other methods measure peak time to obtain
maximum number of positive cell counts. In such cases, the time to peak represent
the time at which maximum number of cells reach above threshold fluorescence.
This is not necessarily the time at which cfos expression in each neuron reaches a

maximum. Since the IHC is a single point measurement in time, it lacks the ability
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to distinguish if the cell is in the rising or falling phase of the expression. Thus, a
variation in the onset time, which is hard to control in IHC as the measurements
are compared across different mice, can render cells in different phases with same
fluorescence. Given the fact that the positive cells are identified using thresholds,
the measurement yields an apparent peak for cell counts and the time at which this
peak occurs is different from the time to peak expression of the protein itself. On
the other hand, our method directly measures the rise and decay of the cfos
expression from single cells through fluorescence for individual mice. Being a
single cell measurement arising from the same mouse reduces, if not eliminates,
the contribution of onset time variation. Thus, we argue that in vivo fluorescence
signal is more sensitive and a direct measure of cfos-eGFP protein concentration
level in a neuron in real time, compared to immunocytochemistry, leading to the
discrepancy in reported time range of maximal cfos protein expression. Thus the
other methods measure the time to get maximal cell fraction (Barth et al., 2004;
Guzowski, 2002; Wen et al., 2013) rather than the maximal expression of protein
in the cell.

Having established the method and such an estimate of time to peak or maximal
expression of IEG, we next study the activation of RSc ensembles following dual

context exposures, as described in Chapter 4.



3.5 Materials and Methods

3.5.1 Transgenic mice:

cfos-eGFP (B6.Cg-Tg(Fos/EGFP)1-3Brth/J Stock no: 014135) and fos-shGFP
(B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1Mmay/J Stock no: 018306) transgenic mice were
obtained from Jackson Laboratory, USA and maintained at the Central Animal

Facility, 11ISc. All protocols were approved by the Institute Animal Ethics Committee.
3.5.2 Craniotomy

Transgenic mice underwent a craniotomy to enable in vivo imaging (Trachtenberg
et al., 2002). A sterile 6mm cover glass was positioned over the skull between the
bregma and lambda, centred at retrosplenial cortex (RSc). The coordinates of the
imaging area (RSc: 2mm from Bregma, 0.5mm laterally) were arrived at by
visualising the blood vasculature. The mice were anesthetised using a solution of
fentanyl (0.05 mg/kg), midazolam (5 mg/kg), and medetomidin (0.5 mg/kg) (FMM)

dissolved in saline.
3.5.3 Artificially and behaviourally induced IEG expression:

Artificial IEG induction was produced by injecting mouse with 2mg/kg bicuculline
intraperitonially to induce a seizure. Mild seizure symptoms were observed. On
completion of the seizure, mouse was anesthetised with FMM to proceed to in vivo

imaging.

For IEG induction in response to behaviour, mice were trained to associate a mild
foot-shock (0.7mA, 2s) in context A (70% ethanol, spaced grill floor) on training day
(Day 1, 2 minutes 30 seconds). To assess fear memory recall, these mice were
placed in context A without shock for 2 mins 30 seconds after 24-48 h to measure

their freezing level.
3.5.4 Imaging setup:

In vivo imaging was performed on a custom-built two-photon setup based on a
Zeiss upright microscope (Axio Examiner Z1) equipped with a 25x% water immersion
objective (NA 1.05, WD 2 mm, Olympus XLPLN25XWMP2). Femtosecond pulses
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from an ultrafast Ti:Sapphire laser (Newport, Tsunami) whose intensity was
modulated using a half-wave plate (Thorlabs, AHWPO5M) and a polarizer
(Thorlabs, GL10-B) was used as as the excitation light source. The excitation beam
was raster scanned using galvo scanning mirrors (Thorlabs, GVSM002) before
entering the microscope body and was focussed on the imaging plane using the
objective lens. The fluorescence that was collected by the objective lens in an epi-
ilumination geometry was then separated using a dichroic before being detected
by photomultiplier module (H7422, Hamamatsu Corporation, Japan).A low noise
current preamplifier (Stanford Research Systems, SR570) was used to amplify the
photomultiplier tube photocurrent, which was further digitized using a data
acquisition board (National Instruments, PCI-6110). Scanlmage (r 3.8.1) software
was used to interface instrument control and generation of galvometric scan
command. Image acquisition was accomplished using a custom Matlab script
interfaced with z-drive of the microscope. The digitized signal was analysed using

Matlab, Origin and ImageJ for further analysis.
3.5.5 Estimation of fluorescence from neurons expressing cfos-GFP:

The in vivo images were analysed manually using a modified version of Time
Series Analyzer plugin (Time Series Analyzer Plugin, Balaji 2014,

https://imagej.nih.goV/ij/plugins/time-series.html) in Image J to quantify the

fluorescence signal. The modified version of the plugin is publicly available as Java
Repository in GitHub (GitHub link:
https://github.com/TheNeurodynamicsLab/ImageJ NDLPIlugins). Fig.

3.3(A) describes the steps to extract the fluorescence signal from each neuron to
obtain the fluorescence value of a neuron at a given time point. Briefly, for each
individual neuron, the peak intensity at given time point was quantified by manually
selecting the nucleus as the region of interest (ROI). The mean pixel intensity of
the ROI through each z-stack was obtained and fit to a Gaussian function to
estimate the activity of the ROI at a particular time point (Fig. 3.3(B)). We identified
2527 neuronal ROIs from 5 mice (3 cfos-shGFP, 2 cfos-eGFP).

3.5.6 Classification of SAC or DAC through curve fitting:

Curve fitting analysis of fluorescence as a function of time for each ROl was done
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in Origin(v2020b) 's user-defined NLFit function using Levenberg-Marquardt

algorithm.
The parameters were set as follows for data fitting to Eq. 3.1:

Parameter A was initialised to the maximum fluorescence of the ROI observed in
the imaging session, while rate constants ki and kd were initialised to 0.01 and
0.001, respectively, at the start of the Levenberg-Marquardt algorithm for least

squares minimisation.

For data fitting to equation 3.2, the additional parameter ts was initialised with a

value of 60 mins.

Post data fitting to Eq. 3.1 and 3.2, the preferred model (SAC or DAC) was selected
based on Akaike Information Criterion (AIC). In brief, AIC measures the information
loss incurred in choosing a fit model given the observed data and degrees of
freedom. Thus, it considers the difference in number of parameters used in a fit as
well as the goodness of the fit. A model with low AIC explains the observed data
with minimal loss of information without over fitting, and hence is preferred. The
goodness of fit was determined by an Adj. R Sq value and it was set to be greater

than 0.5 to identify the selected ROI as an activated cell of the preferred model.
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3.6 Figures
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Figure 3.1: Analytical description of an IEG expression in response to
plasticity related events.
(A) A simple consecutive reaction kinetics for the mRNA (A), protein (B) and

degraded protein (C) describes the response to a plasticity signal. The reaction is
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assumed to proceed with first order forward reaction rate constants kr and kq for
the synthesis and degradation of proteins, respectively.

(B) Solving the coupled differential equations of the sequential chemical reaction
described in (a), we get an expression (Eq. 1) for F4(t) that describes the
fluorescence intensity corresponding to IEG coupled fluorophore at any given time
‘t" as a difference of two exponential terms with rate constants, krand kq. The lines
are the simulated response functions for five values of ki/kq ratios with parameter
A and ks set to 1D.U and 0.1min"'. Time to maximal response, one of the key
parameters necessary to time the neuronal tagging is plotted for these set of ratios
as a scatter plot in the inset. The colour of the open circles corresponds to their
respective solid lines. The red dashed line is a straight line fit of these scatter plot.
(C) Similarly, we describe Eq. 2 for a neuron that got activated twice where A, ks,
kd are as previously described and tq is the time of second activation event. Eq. 2
is simulated (solid lines) to show the response for four ratios of k#kq with parameter
A set to 1D.U., and the time gap between the two events (1q) is set to 60 min as
indicated by the black dotted line.
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Figure 3.2: Seizure induced expression of IEG coupled fluorescence is
described by first order consecutive kinetics:

(A) Schematic of IEG induction to bicuculline administration and following its
dynamics in an anesthetised transgenic mouse through in-vivo imaging of the
retrosplenial cortex (RSc).

(B) Select regions of interest centred around cells #39, #41, #46 and #5, are
arranged as time series show the change in fluorescence across the entire cell
nuclei.

(C) Quantitative measure of cellular response extracted from the time series
images through custom built software for four representative cells are shown as
open circles. The open circles are obtained using the workflow (SFig. 1) and
represent the activity of a neuron at a given time. The red line is the fit of this
activity to Eq. 1. Blue dotted line extends the solid red line to the activity of the cell
outside of the imaging time frame as predicted by our model. See table 3 for fit

parameter details.
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Figure 3.3: Workflow for data extraction from raw images.

(A) Workflow describing the steps for data extraction.

(B) Left: Snapshot of field of view at 90 mins. Yellow circle and inset top represent
one neuron.

Top inset: Optical sections of the neuron at different Z positions in a stack.
Bottom: Gaussian fit to obtain mean pixel intensity or fluorescence of a neuron at
a given time point. The open circles represent the mean pixel intensity of the

neuron at a slice/Z position. The red line represents the Gaussian fitting of mean
pixel intensity as a function of Z position.

Figure 3.4: An optical section of neurons expressing cfos. Left image is an
optical section of cfos-shGFP at 90 mins. Right image shows the ROIs that are

identified, centred and their background cleared.
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Figure 3.5: Freezing level of mice (n=6) on training in CtxtA and retrieval in
CtxtA after 24 hours.
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Figure 3.6: Quantification of behaviourally induced cfos-egfp protein
expression fits well to derived equation.

(A) Behavioral schematic used for inducing cfos expression. Transgenic mice are
trained in context A then made to recall the training context (Context A) after 24
hours. The resulting activation of IEGs is followed, through in-vivo imaging of the

RSc in anesthetised mice.



(B) Maximum intensity projection of a stack of images corresponding to 200 x 200
x 200 ym region obtained at different time points. The cfos-EGFP signal is
localised to the nucleus and hence the activated neurons appear as quasi circular
regions of bright pixels with a diameter of ~20-pixel

units. Snapshots RSc area shown are that of time points 40, 57, 90,120 and 280
mins. The scale bar in the image is 20 microns.

(C) 3 representative image ROls centred around cell “#01”, “#03”,” and #04” in
cfos-EGFP transgenic mice across different time points are shown as image
matrix.

(D) The quantitative measure of fluorescence and hence the cellular expression
profile of four representative cells in (B) along with their fits to Eq. 1 are shown
here. The open circles represent the amplitude of the cellular activity from a neuron
at a given time. The red line is the fit of this data to Eq. 1. A good agreement of the
fit to the observed data (Adj. R Sq > 0.92) indicates that our model is consistent
with the observed cellular response. Blue dotted line extends the fits and spans the

entire x-axis. See Table 4 for fit parameters.
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Figure 3.7: Quantification of behaviourally induced cfos-shgfp fluorescence
describing the protein expression profile fits well to derived equation (Eq. 1).
indicating that the analytical equation generalises to different fluorophore
constructs.

(A) Images from the RSc region of the cfos-shgfp transgenic mice reveal the
circular bright nuclei at 90 mins. The image is one of the 200 x 200 microns optical
section. The scale bar represents 20 microns.

(B) 4 representative image ROIs centred around cells “#501”, “#486”, "#475” and
“#430” in cfos-shgfp transgenic mice across different time points respectively.

(C) are the corresponding quantitative measure of cellular expression profile of
cells in (b) along with their fits to Eq. 1. The open circles represent the amplitude
of the cellular activity from a neuron at a given time. The red line is the fit of this
data to Eq. 1. A good agreement of the fit to the observed data (Adj. R Sq > 0.79)
indicates that our model is consistent with the observed cellular response. Blue

dotted line extends the fits and spans the entire x-axis as explained in Fig. 2. See



Table 5 for fit parameters.
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Figure 3.8: Frequency histogram of fit parameters: ks, and kd along with the
derived parameter Tmax.

(A) Histograms of the formation rate constant ks fits (solid red line) to Gaussian
distribution with a mean of 0.0369 min .

(B) Top row shows parameter distribution plots for cfos-shGFP transgenic mice (n
= ~700 cells). Bins with counts >10 were considered for fit. We see a bimodal
distribution of kq values in cfos-shGFP mice indicating populations of neurons with
different decay kinetics. Bottom row shows the corresponding plots for cfos-EGFP

transgenic mice (n = ~90 cells).
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Figure 3.9: Fraction of IS1 SAC ROls fit to equation 1 using fluorescence from

imaging time points comparable to IS2 imaging time points (i.e. 80 min

onwards from first context exposure) show that ~50% of data fit based on

our criteria. The graph shows the average responses during IS2 of “non-fit” ROls

from one mouse represented as open circles as function of time. Black solid

squares are the corresponding values for IS1. The change in fluorescence over

~15 imaging sessions over 160 mins show a moderate decrease of about 20 — 30

% as compared to cellular profiles that show an order of magnitude increase from

the baseline (~O0 for fit cells).
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3.7 Tables

Amplit k¢ Kd

Fig Cell ude Errorin (min~ | Error | (min | Error Adj-

No. No. (D.U.) Amplitude 1) in ks 1) in kg R-sq AIC
Fig Cell 0.046 | 0.0036 | 0.001 | 1.41E-| 0.973 | 85.435
3.5 #39 2640 39.68309 05 7 76 04 54 79
Fig Cell 0.046 | 0.0035 | 0.001 | 1.34E-| 0.972 | 83.870
3.5 #41 2576 37.18148 16 5 68 04 65 09
Fig Cell 0.053 | 0.0058 | 0.001 | 1.30E-| 0.931 | 84.816
35 #46 2262 32.49374 58 7 1 04 18 39
Fig Cell # 0.045 | 0.0063 | 0.001 | 2.49E- | 0.927 | 102.19
3.5 05 2888 76.33026 76 3 83 04 99 985

Table 3.1: Summary of fit parameters of cfos-egfp expression in response

to seizure data fit to equation 1.

Amplit ks Kqg

Fig Cell ude Errorin (min" | Error | (min | Error Adj-

No. | No. (D.U.) Amplitude 1) in ki 1) in kq R-sq AIC
Fig Cell 0.036 | 0.0049 | 0.005 | 5.31E- | 0.955 | 97.856
3.6 | #28 541 26.39433 75 5 14 04 24 96
Fig Cell 0.025 | 0.0061 | 0.008 | 0.0018 | 0.943 | 123.23
3.6 #11 1050 148.97179 85 4 95 2 41 644
Fig Cell 0.025 | 0.0040 | 0.005 | 8.67E-| 0.939 | 101.22
3.6 #03 596 50.12666 69 6 92 04 26 503
Fig Cell 0.034 0.004 | 6.20E- | 0.930 | 98.065
3.6 #38 461 27.40859 73 | 0.0054 87 04 42 44

Table 3.2: Summary of fit parameters of cfos-egfp expression in response

to single context exposure data fit to equation 1.
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Amplit ks Ka

Fig Cell ude Errorin (min" | Error | (min" | Error Adj-

No. No. (D.U.) Amplitude 1) in ki 1) in kg R-sq AIC
Fig Cell 0.059 | 0.0214 | 0.014 | 0.0027 | 0.915 | 150.73
3.7 #501 1183 148.68142 3 9 04 2 92 661
Fig Cell 0.100 | 0.0798 0.0026 | 0.869 | 157.76
3.7 #486 1089 104.53632 02 6 | 0.014 5 64 146
Fig Cell 0.026 0.026 0.870 | 184.62
3.7 | #475* 3663 416.218 47 - 47 | 0.0036 58 851
Fig Cell 0.071 | 0.0351 | 0.007 | 0.0017 | 0.791 | 172.29
3.7 #430 1471 157.13412 98 4 9 6 18 792

*The kf and kd values for these cells were shared.
Table 3.3: Summary of fit parameters of cfos-shgfp expression in response

to single context exposure data fit to equation 1.

Transgenic

mouse Tmax (min) ks (min) ka (min?)
cfos-shGFP 41+1 0.0369+4E-4 0.0062 +1E-4 0.016 + 0.002
cfos-EGFP 74.5+£0.75 0.0369 + 2E-4 0.002+1E-4 0.005+7E-4

Table 3.4: Summary of the Tmax, kf and kd values from Gauss fit (in S2) to
the respective distributions (Adj-R-Sq > 0.95).
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CHAPTER 4

Memory representation of dual contexts in Retrosplenial cortex

Abstract

The retrosplenial cortex (RSc) has been shown to play an active role during the
context-based behaviour though the nature of this role is still emerging. Since RSc
might maintain contextual information in the form of independent representations
and its interrelations, we sought to probe the cellular representations of different
contexts in RSc. We have previously established an IEG based method (Chapter
3) for segregating the neurons based on their temporal response to a behavioural
event, thereby improving the ability to detect neurons possibly undergoing
plasticity. We used this method to distinguish between neuronal populations that
took part in different events that are separated in time. Specifically, we investigated
the cellular representations of two contexts that were retrieved close in time (60
minutes). We imaged the RSc of cfos-shGFP transgenic mice to follow the
dynamics of cellular changes resulting from contextual fear conditioning behaviour,
enabling us to establish a representation of the contexts at the cellular scale
following memory acquisition. Our results indicate that cellular representation in
RSc of contexts retrieved close in time are unique and independent, i.e., retrieval
of two distinct memories close in time does not merge the neuronal ensembles of
RSc when the memories are acquired 24 hours apart. Thus, we show evidence for
our hypothesis that the memory engram of multiple events can be identified using
the expression dynamics of an immediate early gene as well as study the

independent representation of contexts retrieved close in time.
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4.1 Introduction

Recent and emerging evidences suggest retrosplenial cortex (RSc) plays a vital
role in encoding context-related information(Auger & Maguire, 2018; Auger et al.,
2012, 2015; Miller et al., 2014; Mitchell et al., 2018). Clustered addition of spines
is observed in RSc when contextual training is carried out across multiple sessions
(Frank et al., 2018). Similarly, the inactivation of RSc prevents contextual retrieval
in mice, both contextual fear conditioning and water maze post-training
(Czajkowski et al., 2014; Opalka & Wang, 2020). Preferential activation of RSc
during spatial navigation has also been reported (Cowansage et al., 2014).
Interestingly, it is also shown that in schema-dependent encoding of related events,
RSc is engaged only during the encoding of new learning related to prior
information but not during encoding of completely novel information(Tse et al.,
2011). More importantly, RSc lesion in rats abolishes their ability to resolve context-
based conflicts (Nelson et al., 2014). Thus, all these studies suggest RSc plays an
active role during the context-based behaviour, although the nature of this role is
unclear. Given its function, we reasoned that RSc might maintain contextual
information in the form of independent representations and its interrelations. If such
contextual interrelations have cellular representations in RSc, we would be able to
locate them using our method. This is possible as the method described in the
previous chapter can identify, and longitudinally follow the activated cellular
ensembles in vivo. Thus, in this study we simultaneously probe representation for
a context, how it changes across time, and when a new context is introduced close

in time.
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4.2 Results

4.2.1 ldentification and segregation of neuronal ensemble following dual

context exposure.

In our efforts to identify and segregate the neurons that get activated in response
to multiple events, we imaged the neuronal ensembles that emerge in response to
contextual fear conditioning. We used the following behavioural paradigm to train
and image the contextual representation in cfos-shGFP transgenic mice (Fig. 4.1).
The mice were trained to associate a foot shock in context A (CtxtA) followed by
safety training in context B (CtxtB) the next day. Imaging sessions were carried out
following retrieval tests that were carried out 24 hours after safety training in context
B.

In order to image the same region of brain and hence the cellular ensembles across
the imaging sessions spanning days, we captured and utilised the vasculature of
the brain as shown in figure 4.2 (top). This allowed us to image the same region
within ~0.5 mm (our field of view). Next, we utilised the system of co-ordinates (and
co-ordinate transform as required) to further refine our positioning within the field
of view. We found that these measures were sufficient to provide a localisation
accuracy to locate not just the cell body but the same spines (Fig. 4.2 bottom). We

note that the positioning accuracy required for our purpose is at the cellular scale.

Our behavioural scheme consists of three context exposure sessions spread
across two days. The mice were trained in CtxtA (shock context) and CtxtB (safe
context). When tested for the fear memory they showed significant freezing
compared to baseline (Fig. 4.3). Imaging was performed in two sessions during the
retrieval days with first imaging session after exposure to CtxtA. 24 hours later, we
imaged the mice following exposures to CtxtA followed by CtxtB. The exposures
to contexts were 60 minutes apart. Thus, there are two imaging sessions: one
following exposure to CtxtA (IS1) on the first day of retrieval, and another following
exposure to CtxtB on the second day of retrieval (IS2). As described in the
schematic (Fig. 4.1) the second day retrieval consists of exposures to two contexts,

CtxtA and CtxtB, separated by 60 mins. In I1S1, the imaging session ranged from
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20-180 minutes whereas in IS2 the imaging points ranged from 90-300 minutes, at
intervals of ~10 minutes, from the first context exposure. Since there were ~2500
ROls to be processed, analysed, and classified, we developed a software-based

workflow as described in Materials and Methods (Fig. 3.2).

In both these imaging sessions, we saw two kinds of cellular responses: (I) cells
that were activated once (single activation cells, SAC) and (ll) twice (double
activation cells, DAC) in response to context exposure. Figures 4.4 and 4.5 show
representative cfos expression of SAC and DAC fitto Eq. 3.1 and 3.2, respectively.
The quality of the fit was assessed through the residuals displayed at the bottom
panel of each response. Tables 4.1 and 4.2 summarises the fit parameters. Due to
their difference in initial slope and curvature around the peak of DAC compared to
SAC, DAC fit the double activation cell profile corresponding to Eq. 3.2 better as
determined by our criteria (AIC and Adj. R Sg>=0.5). Figure 4.6 illustrates this
behaviour using an example cell response. The cell responses from second
imaging sessions were fit twice, once with a delay of 60 mins corresponding to time
measurement starting from CtxtB exposure (“delayed 1S2”) and other with zero
delay corresponding to time measurement starting from CtxtA exposure. The
investigated ROIs had to fit either Eq. 3.1 or 3.2 on at least one of the imaging
sessions (IS1 or 1S2) for us to consider it as a neuron. We found that 71 + 6% of
the investigated ROIs show a fluorescence response that fit at least in one of the

imaging sessions.

Figure 4.7(A) shows the snapshot of the cellular activity at the RSc of cfos-shGFP
transgenic mice. The green cells are the activated cells on imaging session 1 and
the magenta are the activated cells on imaging session 2. The third panel overlays
the cells that were activated on IS1 (green) and 1S2 (magenta) to show the
overlapping cells as white nuclei. Apart from these cells, the snapshot shows cells
that were activated in 1S1 or IS2 only. These images represent the fraction of
overlapped cells across two context exposures and this fraction is not known so far
in RSc. We estimate this number to be ~30% (Fig. 4.7 (B) white bar) and it is
similar to what is observed in the other regions of the brain (Repa et al., 2001;
Vazdarjanova & Guzowski, 2004).

4.2.2 Retrosplenial cortex ensembles in response to dual context exposure.
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Next, we addressed whether there is a differential representation of a context when
a new context is introduced. In the behavioural scheme (Fig. 4.1) used to train and
image the contextual representation in cfos-shGFP transgenic mice, the mice were
subjected to context exposure three times. We were interested in observing the
neurons activated in response to these exposures or experiences. A neuron can
get activated in response to any one or two or all these experiences. Hence, we
used our method to segregate the activated neurons into different categories as

described below.

Based on the temporal profile of expression, we interpreted the SAC that were
identified following an exposure to a given context as representing that context or
experience only, whereas the DAC as representing two events, e.g., representing
two context exposures or context exposure followed by a spontaneous event or a
spontaneous event followed by a context exposure. Next, we compared these
groups with our behavioural scheme to reason and assign these different classes
to the corresponding memory representations, e.g., since IS1 follows retrieval
event in CtxtA and SAC IS1 responses are consistent with Eq 3.1 representing
single events, we assign them to context A cellular ensemble. Similarly, these SAC
and DAC were assigned to one of the eight categories as listed in Table 4.3. The
Venn diagram in figure 4.8 represents the various categories of cells representing
a context and their expected session wise fit result(s). We describe below the

categories and their rationale.

Category 1) is the subset of cells that are activated in response to all three
experiences, i.e., these cells show a profile that is consistent with SAC 1S1 (CtxtA)
and DAC IS2 (CtxtB).

Three categories describe the subsets of cells activated to a single experience
only, namely categories 3) ,4), 5). These cells have expression profiles
corresponding to one of the following: SAC in IS1 (CtxtA), SAC 1S2 (CtxtA), SAC
IS2 with 60 mins delay (CtxtB) respectively.

Three other categories (Categories 2, 6 and 7) represent the subset of cells that
are reactivated. Category 2): These are cells that consistently respond only to
context A i.e., SAC in IS1 (CtxtA) and SAC in I1S2 (CtxtA). Category 6) are cells

63



activated in I1IS1 and fit a SAC or DAC profile and then reactivated in 1IS2 with a
profile that can be classified to DAC or a SAC with 60 min delay. We interpret these
cells as common between Ctxt A IS1 and Ctxt B. Similarly, category 7) are cells
activated in response to CtxtA 1S2 and CtxtB, i.e. DAC in I1S2.

Finally, category 8) are the ROls/cells that are not activated in response to any of
the experiences as both IS1 and 1S2 responses did not fit, i.e., the ROls did not fit
as a SAC or DAC.

Following this classification system, we estimated the fraction of neurons activated
in response to single context exposure (CtxtA) during the first retrieval event as 44
+ 3% (Fig. 4.9, orange bar) and the fraction of cells that were activated in CtxtB,
i.e., category 6, as ~42 + 9% (Fig. 4.9, green bar). This allowed us to ask if the
ensembles representing A and B are unique. We tested the uniqueness of these
ensembles by estimating the fraction of the cells that were common between these
two ensembles. We reasoned that an above chance overlap would indicate that
the same population is getting activated in both the contexts, while an at chance
overlap would indicate that the neurons recruited during the corresponding context
retrieval are different and independent. We found the overlap fraction to be at
chance (Fig. 4.9, yellow bar, 19t4%) suggesting that the population representation

of these contexts is indeed unique and independent.

Next, we proceeded to investigate if it is possible to link two distinct memory
representations by retrieving these memories close in time. It is interesting to note
that if the memory formation were to happen within a time window, then their
likelihood of overlapped neuronal representation in the hippocampus is high
(Denise J. Cai et al., 2016; Silva et al., 2009). We asked if such overlap can be
seen in RSc following temporally close context retrieval as opposed to acquisition.
We estimated the chance of a neuron getting activated in CtxtA in IS1 (first
exposure of context A) and chance of it getting activated in CtxtB (Fig. 4.9, pink
bar, 42 £ 8%). We then compared it with the chance of a neuron getting activated
in CtxtA in 1IS2 and CtxtB simultaneously (Fig. 4.9, brown bar, 55 + 18%). Since
CtxtA during IS2 and CtxtB occur closer in time (60-minute fraction) than CtxtA in
IS1 (24-hour fraction), if such temporal linkage were to occur, we would see the

60-minute fraction being greater than 24-hour fraction. However, we found both
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were comparable despite a trend of 60 min fraction being higher than the 24 h
fraction (Fig. 4.9). Additionally, we found these ratios were comparable to that of
reactivation probability estimated as fraction of neurons from 1S2 CtxtA that got
activated during CtxtA on I1S2.

Next, we proceeded to test if our method can identify DAC even in this scenario.
We estimated the fraction of DAC in CtxtA during IS2 population and compared it
with DAC identified during I1S1 or delayed 1S2. Our comparison reveals that the
fraction of DAC in CtxtA during I1S2 is indeed significantly higher than DAC in IS1
or delayed 1S2 (Fig. 4.10). We saw DAC of CtxtA followed by CtxtB (58.3 +16.3%)
to be significantly different (t test: p <0.002, one tailed) than DAC of either CtxtA
or CtxtB (~13 + 2%), thus, establishing the fact that following a protein expression
kinetics allows one to segregate cells even when the mouse is exposed to two

contexts close in time.

Since cfos is an IEG immediately downstream of CREB, we asked could the levels
of cfos be predictive of reactivation probability during repeated retrieval. We
estimated the reactivation probability by binning the neurons according to their
amplitudes and estimating the fraction of fit neurons in each of these bins. The ratio
between the number of fit or activated neurons to the total number of neurons
represents the fraction of reactivated neurons in each intensity bin. We defined this
ratio as the probability of reactivation in that bin. Figure 4.11 (A) shows this
reactivation probability as a function of amplitude of cfos signal. We see a weak,
but a significant correlation (R > 0.6) exists between the amplitude and the
reactivation probability. In order to rule out the possibility that the difference in
amplitude could bias the R.Sq of the cellular response fit and hence the reactivation
probability, we also plotted the Adj. R.Sq of the fits as a function of amplitude in
Figure 4.11 (B). We see that Adj. R Sq is invariant with respect to the amplitude of
the cfos signal as indicated by a near zero slope of 3E-6 + 4E-6.
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4.3 Discussion

In summary, we followed the IEG protein expression dynamics to identify and
segregate the activation of neurons into different groups as per the behavioural
events. Conventionally, three probes are required to mark three retrieval events.
However, our method requires one IEG-fluorophore to mark three retrieval events.
Since our method utilises the temporal profile of IEG expression, as opposed to
intensity threshold, for identification, segregation, and classification of neurons, we
are able to increase the specificity with which we identify behaviourally relevant

neuronal ensembles.

We found the level of cellular activation in RSc elicited by retrieval of CtxtA and
CtxtB is nearly same and is similar to what has been found in other regions of the
brain with dense encoding (Vazdarjanova & Guzowski, 2004). We saw responses
of ~ 20% (data not shown) of neurons still show cellular response profile that
enables them to be classified as active in CtxtA even though the exposure has
occurred 90 mins prior to first imaging data point of imaging session 2. In order to
arrive at an upper bound for fraction of cells that we could have missed we took
the 1IS1 SAC data from 90 mins onwards and asked what fraction of those cells
would still qualify as SAC (Fig. 4.12). We estimated that even after 90 mins we
were able to fit ~50% of cells. Interestingly, many of the neurons activated in CtxtB
show expression dynamics consistent with dual activation profile. We interpret this
as a neuronal response to CtxtA as well as CtxtB exposure. Though the activated
cellular fraction at RSc has not been reported before, our estimate is comparable
to the ensemble size typically obtained in other regions through conventional
studies (Guzowski & Worley, 2001).

Further we assigned the SAC from CtxtB exposure and DAC from CtxtA exposure
of 1S2 to CtxtB cellular representation. We note this fraction ~45% for CixtB is
similar to that of CtxtA cellular fraction. Thus, consistent with our hypothesis, these
two contextual representations can be identified and assigned to different cell

populations using cellular activation profiles.

One of the defining events of IS2 is the arrival of the CtxtB exposure after CtxtA. It

is known that contextual exposure could be temporally linked through cellular
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activation(D J Cai et al., 2016; Silva et al., 2009). This being the case, we expect
a larger fraction of activated cells following CtxtA exposure in IS2 should be DACs.
Thus, we compared the fraction of DAC seen in response to CtxtB following CtxtA
exposure with that of DAC seen in response to a single context CtxtA or CtxtB.
Such a piece of information is difficult to obtain through conventional molecular
probing methods since the comparisons are made at a population level instead of

a single cell.

One of confounding factors in conventional method is the difficulty in assigning the
cell response to behavioural event. For example, DAC in response to single context
exposure, either in CtxtA or CixtB, would be falsely identified as representing two
contexts in conventional methods. More importantly, majority of the ROIs that did
not fit either single or double activation, would have been classified as representing
one of the contexts when in fact they do not represent IEG activation intended
through behavioural exposure. While it is possible the lack of fit could represent a
different model of activation profile, we see a vast fraction of the non-fit ROIs to be
invariant with respect to time. Since their fluorescence is measured to be above
the baseline, these cells might add noise in the conventional estimates of cell

fractions.

Further, we could identify the activated ensembles following different contextual
memory retrieval in RSc as early as 24 hours. Taking advantage of these, we
probed if distinct memories once formed could be linked through closely spaced
retrieval events. As expected, we found that mere retrieval of two distinct memories
close in time is not sufficient to link the RSc ensembles representing these

memories if the memories themselves are acquired 24 hours apart.
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4.4 Materials and Methods

4.4.1 Transgenic mice

fos-shGFP  (B6.Cg-Tg(Fos-tTA,Fos-EGFP*)1Mmay/J Stock no: 018306)
transgenic mice were obtained from Jackson Laboratory, USA and maintained at
the Central Animal Facility, lISc. All protocols were approved by the Institute Animal

Ethics Committee.
4.4.2 Craniotomy

Transgenic mice underwent a craniotomy to enable in vivo imaging as mentioned

in section 3.5.2.
4.4.3 Dual exposure behaviour paradigm

Mice were trained to associate a mild foot-shock (0.7mA, 2s) in context A (70%
ethanol, spaced grill floor) on training day (Day1, 2 minutes 30 seconds). The next
day, these mice were placed in context B (20% ethyl acetate, smooth floor, triangle
chamber feature) without shock for 2 mins 30 seconds (safety context training).
After 24 hours (Day 3), mice were placed again in context A to test for memory
recall. On Day 4, mice were placed in context A followed by context B separated
by a time period of 60 minutes to test their ability to discriminate similar contexts at
a recent time (24/48 hours). We used four cfos-shGFP mice for this experiment
followed by imaging. Of the four one of the mice did not learn (no freezing in any

of the retrievals).

4.4.4 Imaging setup:

In vivo imaging was performed as described in section 3.5.4.
4.4.5 Classification of SAC or DAC through curve fitting

Data analysis of fluorescence extraction and fit was carried out as previously
described in section 3.5.5 and 3.5.6.

Additionally, for classifying cell responses to dual context exposure, fluorescence

measured from selected ROIs as a function of time was fit to SAC or DAC profile
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witht=0 ort =60 (IS2 delayed). Preferred model was chosen based on AIC score,

and goodness of fit was assessed using Adj. R-sq.
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4.5 Figures

24h 24h

151 1S2

Figure 4.1: Outline the behavioural paradigm and imaging scheme. Mice were
trained to associate a mild footshock in ctxt A (orange) on day 1 and trained for
safety in ctxt B (blue) on day 2. On day 3, memory recall for ctxt A was tested
followed by in vivo imaging of RSc (1S1). On day 4, mice underwent dual exposure
contextual recall, i.e., mice were tested for memory for ctxt A followed by memory
for ctxt B after 60 mins (grey box). Post ctxt B recall, RSc was imaged (1S2).
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Figure 4.2: Longitudinal in vivo imaging of the same area across multiple
days is achieved by using the unique blood vasculature of craniotomized
mice. The representative images show the precision with which dendrites and their
spines can be imaged across multiple days (1-5 days) in Thy1-YFP transgenic
mice. The same method was followed for longitudinal in vivo imaging of cfos

transgenic mice.
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Figure 4.3: Freezing percentage of the mice used in dual exposure contextual

recall paradigm. M1: Red circle, M2: Black square, M3: Blue triangle.
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Figure 4.4: Representative plots of expression profile of single activation
neurons.
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Figure 4.5: Representative plots of expression profile of double activation
neurons. The response of the neurons(DAC) fit (red line) is explained better by

DAC profile Eq. 3.2 rather than SAC profile Eq. 3.1. The dashed blue line shows

the fit spanning the entire laboratory time frame of t =0 min where the mouse was
exposed to the first context A, followed by t=60 min where the mouse was
exposed to context B.

72



Cell #328

1500

1000

Fluorescence (D.U.)

500 - |

' T T T ' T —
0 50 100 150 200 250
Time (min)
Figure 4.6: Comparison of a DAC fit to Eq 1 with (t = 60min, solid green line)
and without (t = 0 min, solid red line) delay along fit to Eq 2(solid blue line).
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Figure 4.7: Representative snapshot of cfos neuronal ensembles.
(A) Representative snapshot of cfos neuronal ensembles at~90 min on imaging
sessions IS1 (green) and 1S2 (magenta) with overlapping ensembles shown in

white. We constructed these images from snapshots of the RSc at~90 min after
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the first context exposure of the imaging session. (B) Fraction of activated neurons

on days IS1, 1IS2 and their overlap.

@ All cxts

Consistently in CxtA

(3) cxtalonly
(4) cxta2 only @v
@ CxtB only | .
(6 ) CxtAlandB @ 7 :
7 | CxtA2 and B |

Figure 4.8: Visual schematic representing different categories of cells
representing context information. The circles in the diagram represent the

cellular ensemble that got activated in 1IS1(red), 1IS2(yellow) and delayed 1S2 (blue).
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Figure 4.9: Fraction of activated neurons on different retrieval events.
Different bars on the left represent activated neurons (SAC or DAC) in response to
different ctxt exposure - Orange: Cxt Aon IS1, Green: CxtB on IS2, Purple: chance
factor determined as a product of CtxtA and CixtB fractional activation , Yellow:
observed overlap of CtxtA IS1 and CtxtB IS2 activation. The bars on the right side
show the fractional activation to determine the overlap among/across the context
with respect to CtxtA exposure in IS2. The blue bar represents the fraction of the
cells that are part of Ctxt A IS2 and are also part of Ctxt A IS1. We estimate this
fraction as this is independent of the activation across days. The pink bar
represents the fraction of cells that are activated in Ctxt A IS1and Ctxt B IS2, while
the grey bar represents the fraction of CtxtA IS2 cells that are active during Ctxt B
1S2.
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Figure 4.10: Fraction of DAC is significantly more in case of ctxt recalled
close in time. The fraction of double activation cells in response to ctxt A followed
by ctxt B on IS2 is significantly more than the fraction of double activation cells in

response to single context exposure event
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Figure 4.11: (A) Correlation between the amplitude of activated neurons in IS1 and
the probability of reactivation of the same neurons in IS2. The probability of
reactivation is calculated as Nrit/Noin Where Niit is the fraction of neurons that fit with
adj R-sq greater than 0.5, Nbin is the total number of cells within the amplitude bin
Ivin. (Bin size = 500). (B) Correlation between the amplitude of fit neurons with the

adj R-sq.
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Figure 4.12: Fraction of IS1 SAC ROIs fit to equation 1 using fluorescence
from imaging time points comparable to IS2 imaging time points (i.e. 80 min
onwards from first context exposure) show that ~50% of data fit based on
our criteria. The graph represents fraction of cells fit to equation 1 when the fit
was performed with imaging time points comparable to IS2 imaging time points,
i.e., ~80 min onwards. Orange bar is that fraction of fit ROls of IS1 SAC but not 1IS2
SAC or DAC (mean of 3 mice, n = 32, 213, 162 ROIs) whereas green bar is the
fraction fit ROls of IST SAC (mean of 3 mice, n = 137, 327, 319 ROls).
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4.6 Tables

Amplit ks Kq

Fig Cell ude Error in | (min" | Error (min" | Error Adj-

No. | No. (D.U.) | Amplitude 1) in ks 1) in kg R-sq | AIC
Fig Cell 0.059 | 0.0214 | 0.014 | 0.0027 | 0.915 | 150.73
4.4 | #501 1183 148.68142 3 9 04 2 92 661
Fig Cell 0.100 | 0.0798 0.0026 | 0.869 | 157.76
4.4 | #486 1089 104.53632 02 6 0.014 |5 64 146
Fig Cell 0.026 0.026 0.870 | 184.62
4.4 #475* | 3663 416.218 47 - 47 0.0036 | 58 851
Fig Cell 0.071 | 0.0351 | 0.007 | 0.0017 | 0.791 | 172.29
4.4 | #430 1471 157.13412 98 4 9 6 18 792

*The kf and kd values for these cells were shared.

Table 4.1: Summary of fit parameters of cfos-shgfp expression in response

Kq

Amplit k¢
Fig Cell ude Error in | (min" | Error (min™ | Error Adj-
No. | No. (D.U.) | Amplitude 1) in ks 1) inkq R-sq | AIC
Fig Cell 0.097 | 0.0574 | 0.020 | 0.0033 | 0.934 | 202.68
4.5 #233 4894 420.98677 77 8 89 2 3 672
Fig Cell 0.116 | 0.0741 | 0.015 | 0.0016 | 0.943 | 187.96
4.5 #228 4856 282.65906 99 5 37 4 95 317
Fig Cell 0.073 | 0.0252 0.0025 | 0.944 | 146.82
4.5c | #66 1164 107.45433 22 1 0.017 | 5 4 517
Fig Cell 0.030 0.030 | 0.0022 | 0.944 | 174.71
4.5 #239* | 3807 261.832 36 - 37 9 65 616
Fig Cell 0.044 0.021 | 0.0073 | 0.937 | 159.57
4.5 #232 1802 492.2815 95 0.0202 | 97 8 8 96

to single context exposure data fit to equation 1.

*The kf and kd values for these cells were shared.

Table 4.2: Summary of fit parameters of cfos-shgfp expression in response

to dual context exposure data fit to equation 1.

80



Venn Diagram IS2 (Cxt
section IS1 (Cxt Al) A2) IS2 (Cxt B) Physiological meaning
1 1 1 1 Cell that is present in all contexts
2 1 1 0 Cell that is present in cxtA only
3 1 0 0 Cells present in IS1 cxtA only
4 0 1 0 Cells present in IS2 cxtA only
5 0 0 1 Cells present in B only
Cells present in IS1 cxtA and 1S2
6 1 0 1 cxtB
Cells present in IS1 cxtA and IS2
7 0 1 1 cxtB
8 0 0 0 Cells not activated in all contexts

Table 4.3: Categories of behaviourally relevant neurons. Based on cellular
response profile and fits as SAC or DAC in imaging sessions IS1 and I1S2, the ROls
are classified into one of the eight categories as represented in the Venn Diagram
(Fig. 4.8).

81



4.7 References

Auger, S. D., & Maguire, E. A. (2018). Retrosplenial cortex indexes stability
beyond the spatial domain. Journal of Neuroscience, 38(6), 1472-1481.
https://doi.org/10.1523/JNEUROSCI.2602-17.2017

Auger, S. D., Mullally, S. L., & Maguire, E. A. (2012). Retrosplenial cortex codes
for permanent landmarks. PLoS ONE, 7(8).
https://doi.org/10.1371/journal.pone.0043620

Auger, S. D., Zeidman, P., & Maguire, E. A. (2015). A central role for the
retrosplenial cortex in de novo environmental learning. ELife,
4(AUGUST2015). https://doi.org/10.7554/eLife.09031

Cai, D J, Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W. L., Wei, B.,
Veshkini, M., La-Vu, M., Lou, J., Flores, S. E., Kim, I., Sano, Y., Zhou, M.,
Baumgaertel, K., Lavi, A., Kamata, M., Tuszynski, M., Mayford, M., ... Silva,
A. J. (2016). A shared neural ensemble links distinct contextual memories
encoded close in time. Nature, 534(7605), 115-+.
https://doi.org/10.1038/nature17955

Cai, Denise J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., Wei, B.,
Veshkini, M., La-Vu, M., Lou, J., Flores, S. E., Kim, |., Sano, Y., Zhou, M.,
Baumgaertel, K., Lavi, A., Kamata, M., Tuszynski, M., Mayford, M., ... Silva,
A. J. (2016). A shared neural ensemble links distinct contextual memories
encoded close in time. Nature, 534(7605), 115-118.
https://doi.org/10.1038/nature17955

Cowansage, K. K., Shuman, T., Dilingham, B. C., Chang, A., Golshani, P., &
Mayford, M. (2014). Direct Reactivation of a Coherent Neocortical Memory of
Context. Neuron, 84(2), 432-441.
https://doi.org/10.1016/j.neuron.2014.09.022

Czajkowski, R., Jayaprakash, B., Wiltgen, B., Rogerson, T., Guzman-Karlsson,
M. C., Barth, A. L., Trachtenberg, J. T., & Silva, A. J. (2014). Encoding and

storage of spatial information in the retrosplenial cortex. Proceedings of the

82



National Academy of Sciences of the United States of America, 111(23),
8661-8666. https://doi.org/10.1073/pnas.1313222111

Frank, A. C., Huang, S., Zhou, M., Gdalyahu, A., Kastellakis, G., Silva, T. K., Lu,
E., Wen, X., Poirazi, P., Trachtenberg, J. T., & Silva, A. J. (2018). Hotspots
of dendritic spine turnover facilitate clustered spine addition and learning and
memory. Nature Communications, 9(1). https://doi.org/10.1038/s41467-017-
02751-2

Guzowski, J. F., & Worley, P. F. (2001). Cellular Compartment Analysis of
Temporal Activity by Fluorescence In Situ Hybridization (catFISH). Current
Protocols in Neuroscience, 15(1), 1.8.1-1.8.16.
https://doi.org/10.1002/0471142301.ns0108s15

Miller, A. M. P., Vedder, L. C., Law, L. M., & Smith, D. M. (2014). Cues, context,
and long-term memory: the role of the retrosplenial cortex in spatial
cognition. Frontiers in Human Neuroscience, 8(AUG), 586.
https://doi.org/10.3389/fnhum.2014.00586

Mitchell, A. S., Czajkowski, R., Zhang, N., Jeffery, K., & Nelson, A. J. D. (2018).
Retrosplenial cortex and its role in spatial cognition. Brain and Neuroscience
Advances, 2, 239821281875709. https://doi.org/10.1177/2398212818757098

Nelson, A. J. D., Hindley, E. L., Haddon, J. E., Nelson, A. J. D., Hindley, E. L.,
Haddon, J. E., Vann, S. D., & Aggleton, J. P. (2014). A novel role for the rat
retrosplenial cortex in cognitive control A novel role for the rat retrosplenial
cortex in cognitive control. 90-97. https://doi.org/10.1101/Im.032136.113

Opalka, A. N., & Wang, D. V. (2020). Hippocampal efferents to retrosplenial
cortex and lateral septum are required for memory acquisition. Learning and
Memory, 27(8), 310-318. https://doi.org/10.1101/LM.051797.120

Repa, J. C., Muller, J., Apergis, J., Desrochers, T. M., Zhou, Y., & LeDoux, J. E.
(2001). Two different lateral amygdala cell populations contribute to the
initiation and storage of memory. Nature Neuroscience, 4(7), 724—731.
https://doi.org/10.1038/89512

83



Silva, A. J., Zhou, Y., Rogerson, T., Shobe, J., & Balaji, J. (2009). Molecular and
cellular approaches to memory allocation in neural circuits. Science,
326(5951). https://doi.org/10.1126/science.1174519

Tse, D., Takeuchi, T., Kakeyama, M., Kaijii, Y., Okuno, H., Tohyama, C., Bito, H.,
& Morris, R. G. M. (2011). Schema-Dependent Gene Activation and Memory
Encoding in Neocortex. Science, 333(6044), 891-895.
https://doi.org/10.1126/science.1205274

Vazdarjanova, A., & Guzowski, J. F. (2004). Differences in hippocampal neuronal
population responses to modifications of an environmental context: Evidence
for distinct, yet complementary, functions of CA3 and CA1 ensembles.
Journal of Neuroscience, 24(29), 6489—-6496.
https://doi.org/10.1523/JNEUROSCI.0350-04.2004

84



CHAPTER 5

Vector field-based analysis to assess spatial memory in

navigational task

Abstract

Conventional behavioural measures for testing spatial memory in navigational
tasks compare the residence time of the animals in different regions. Such
measures are inherently simple and thereby are limited in their ability to extend the
behavioural task to probe finer details about the nature of the memory. Here, we
developed a vector field-based analysis framework to assess spatial memory in a
navigational task. Specifically, we constructed velocity-based vector fields that
describe the motion of animals or subjects as well as their search pattern in the
Morris water maze (MWM) task. Next, we utilised the field properties to develop
three metrics to quantify the nature of spatial memory: accuracy, uncertainty, and
intensity of search. The proposed metrics resolve the information of spatial memory
into measurable independent components and brings out the differences in the
memory representation that are normally not possible to elucidate from

conventional measures.
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5.1 Introduction

Navigational tasks are widely used to address questions related to the
neuroscience of spatial memory. One such task, the Morris water maze (MWM)
and its modifications have been extensively used to study a variety of cognitive
phenomena, especially related to hippocampal-dependent memory and spatial
representations (Brandeis et al., 1989; D’'Hooge & De Deyn, 2001; Redish &
Touretzky, 1998). In the original or reference version of the MWM task, animals,
over multiple trials, learn the spatial location of a hidden platform submerged in a
pool of water using only the distal cues (R. Morris, 1984; R. G. M. Morris, 1981).
Learning is assessed via performance during training trials whereas memory
retention is investigated using a probe trial. During the probe trial, the platform is
removed, and the animal is made to search for the platform in the pool typically for
60s. Thus, based on the animal's search behaviour during a probe trial, we assess
its spatial memory. Many variations of the water maze exist to probe different

questions, as listed below.

1. Marked platform task: The platform location is marked with a proximal cue, i.e.
a flag. Thus, the task is independent of the hippocampus. It serves as a control to
ensure proper motor/taxis as well as visual system of the animal.

2. Reference memory task: The traditional MWM task with a fixed platform location
and distal cues.

3. Delayed match to place task: The platform location is changed every day. The
animal is taught to associate a new platform location in the first training session of
the day. This version of the MWM is used to probe for working memory.

4. Goal-reversal: The platform location is shifted, usually the place opposite the
original training location. In such a case, the cues remail the same, but new spatial

relations must be learnt by the animals.

There are several measures that have been proposed to estimate the extent of
spatial memory retention. Traditionally, memory retention has been assessed by
estimating and comparing the time spent by the animal in the quadrant of the pool
where the platform was located during training (target quadrant) with the time spent

in other three quadrants. The time spent in the target quadrant acts as a readout
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for memory retention (Petrosini et al., 1998). Time spent in zones or areas of
multiple sizes centred at the platform is also utilised as a parameter for measuring
spatial memory as this provides a more localised readout for memory retention.
Similarly, platform crossings, which describe the number of times the animal has
crossed the platform location during a probe trial, is used as a metric for spatial
memory. Additionally, path length is a metric that measures the total distance
covered in search of the platform by the animal during a probe trial (Dalm et al.,
2000). Other conventional measures report escape latency, the time taken to reach
the platform location, thigmotaxis duration (Wolfer & Lipp, 1992), i.e., the time
spent exhibiting wall-hugging behaviour, and average speed all as an indicator of
functional swimming/motor skills. While these methods provide information on
whether the animal can locate the platform, these measures are inherently simple
and do not necessarily the capture the complexity associated with spatial memory

and navigational performance.

Improvements over the classical measures have been proposed over the years
(Pereira & Burwell, 2015). One such method is the proximity measure that
calculates the average distance of the animal from the centre of platform location
(Gallagher et al., 1993). This measure is effective in differentiating between two
search strategies of equal path length: a focused search near the platform scores
better than a diffused search around the platform. Incidentally, the proximity
measure has been shown to be more sensitive than the quadrant, zonal and
platform crossings in detecting spatial memory deficient in Morris water maze task

(Maei, Zaslavsky, Teixeira, et al., 2009).

A different approach to quantify spatial memory uses increasingly complex
methods that classify the swim trajectories into path strategies utilized by the
animal. These approaches utilize methods and formulate strategies to describe
the qualitative aspect of learning in the water maze task (Garthe et al., 2009;
Gehring et al., 2015; Graziano et al., 2003). Such path strategy-based methods
use semi-automated or machine learning algorithms to ensure feasibility of
classifying the swim trajectory reliably. Interestingly, in certain cases, such
methods detect multiple strategies within trials (Cooke et al., 2019; Overall et al.,

2020; Vouros et al., 2018). These methods are dependent on a defined set of
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possible strategies that have been previously identified in available datasets used
to train the classifier. Thus, they are limited to the set of defined categories of
search strategies, focus on the qualitative nature of learning, and provide a

descriptive readout on the nature of spatial memory.

Maei et al proposed an entropy-based measure that uses the concept of entropy
from information theory. This entropy-based measure H describes the extent of
search at the platform location and the focus of this search (Maei, Zaslavsky,
Wang, et al., 2009). This method utilizes the rationale that the animals improve
their focus or “organize” their search efforts to locate the platform as a function of
learning. Thus, its swim trajectories go from a highly disorganized state to a more
organized state with training. Computing the entropy of the swim trajectories
(summation of entropy in path variance (Hpath) and entropy in error variance (Herror))
provides a measure of greater sensitivity compared to the proximity measure.
However, the extent of improved sensitivity of the entropy measure is dependent
on the relative weighting of its components Hpath and Herror in @ given experimental
setting, since one component maybe be more sensitive to particular search
strategies that the other. Such estimates, despite being highly sensitive, do not
provide a uniform scale of measurement that is intuitive and easy to compare due
to their nonlinear nature. Additionally, this measure primarily estimates the
disorderliness in the instantaneous behaviour, thus not utilizing or measuring the

spatial variation of the navigational properties.

In this context, we propose new measures based on vector fields constructed from
velocity components that are oriented towards a specific point in the water maze.
Our proposition stems from the observation that the animals tend to slow down at
and around the platform location during the probe trials with the expectation of
landing on the platform. This behaviour gains prominence as they acquire the
spatial memory for the location of platform. Such slowing down also occurs near
the periphery when they are traveling towards the pool boundaries. In addition,
they show similar behaviour when they overshoot the platform position and turn
around. Thus, we believe, the measures developed to understand the properties
of these vectors and their spatial distribution as a vector field could provide

information regarding platform location as perceived by the animal. Therefore, in
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summary, we develop a framework and derive measures to describe the navigation

exhibited by the animals in the water maze.

The new framework and measures enable us to dissect subtle memory deficits in
animals performing the Morris water maze task. We hypothesize that vector maps
of two components, the velocity vector component along (V}.) and orthogonal (V,,)
to the occupancy centre, contain information on the intention of the animal’'s
movement. Specifically, we reason that the velocity vector component along the
occupancy centre (V;;) measures the animal's movement that contribute to its
approach to the location and the velocity vector component orthogonal to the
occupancy centre (V,,) measures of the animal's movement that contributes to
circular motion around the occupancy centre. Next, we calculate the vector field
properties, namely, the divergence of V|, to describe the rate of change of these
measures in the 2D space. Specifically, we hypothesize that spatially localized
negative divergence peaks of V|, reveals convergence hotspots or the putative
search centres (Pcs). Using the search centre, we quantify the spatial memory in
terms of three independent metrics, namely accuracy, uncertainty, and intensity of

search.

We argue that unlike the previously proposed measures, the three metrics based
on divergence field property are sufficient to describe the nature of spatial memory
irrespective of factors outside of memory-based phenomena, such as search

strategy or differential motor skill ability.
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5.2 Theory

5.2.1 Velocity-based vector fields for describing the intentional movement

of animal swim trajectories:

i) Description of velocity vector fields

We first developed an analytical framework for describing the swim trajectories in
terms of a velocity vector field. The position vector (F{) represents the point at
which the animal is located at a given time (‘t'- usually measured in video frames).
The origin of the reference frame 0(0,0) is set to be the top left corner (Fig.5.1
(A)). Thus, from an image taken from the top, the pixel co-ordinates (Px, Py) can

be used to write (Pt) as follows:

P, =PRi+Pj

— P, and P, are the distance in pixels from top left corner in the image

...Eq.(i)

For convenience, we define a displacement vector (DT) that provides a relation of

the animal’s position with respect to a point of interest, e.g., the platform. This is
calculated as the difference between the platform vector PT and the instantaneous

position vector ( Fg ) defined above. (Fig. 5.1 (B)).
D,=P,—P, ...Eq.(ii)

The velocity vector (V; = %H{) is a metric that describes the movement of the

animal. Since we make these measurements from time lapse videos that are
recorded at uniform frame rates, we can calculate the velocity vector as the

difference between two consecutive displacement vectors. (Fig.5.1 (C)).

V, =Dy — D, ... Eq.(ii)
i) Definition of occupancy centre
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Since we measure the component of velocity of the animal that is directed towards
reaching the “goal’, it is convenient to define the occupancy centre Poc as the point
where the likelihood of finding the animal is high given its trajectory. We calculate
Poc as the centre of mass obtained from the residence time map that is segmented
using a maximum entropy threshold. Maximum entropy (ME) segmentation
determines a threshold (T) that has the maximum entropy of the background (Hs)

and foreground (Hr) in an image (Sahoo et al., 1988).

T
Hg = —z pilog,(p;)
=1

n
Hp = — z pilog,(py)
i=T+1

where p; is the number of pixels with value i divided by the total number of pixels
in their respective segments (Hs and Hr), and n is the maximal possible intensity
in the image. This enables us to segment out the regions with zero or low
occupancy from regions of high occupancy without bias. The use of ME
segmentation increases the fidelity and hence the confidence in our estimate of the
occupancy centre as the most likely resided region based on a animal’'s swim
trajectory. This is given by (Fig. 5.1(F))

_ Zin=1XiIi _ Z?=1J’i1i

Xem = —Zin=1li and y.,,, = o where I; > T

such that for the choosen T ,the sum (Hg + Hp) is maximum
iii)  Description of vector fields with respect to the occupancy centre

Using the occupancy centre, we computed two different measures to describe the
animal’s movement. First, the component of velocity vector along the occupancy
centre, a spatial property that measures the contribution of the movement at that
location towards the occupancy centre. This component is the vector projection or

the velocity vector V(t) along the direction of the occupancy centre (EI’P_;), and is

given by (Fig. 5.1(D))
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Vit = |Vi| cos 6, dp,, ... Eq.(iv)

where |V{| is the magnitude of the velocity vector and 9, is the angle between the

velocity vector 7; and a unit vector pointing towards the occupancy centre (dp,,.)

from the current position.

Second, the velocity vector component orthogonal to the occupancy centre is a
spatial property that measures at that position, the contribution of the animal’s
movement to the circular motion about the occupancy centre. It is given by (Fig.
5.1(E))

VJ_t == |V[;|Sln 61; dPOC Eq(V)

where |7t| is the magnitude of the velocity vector and 6, is the angle between

velocity vector 7{ and the unit vector pointing towards the occupancy centre (E;;).
We note if ME segmentation yields multiple disconnected regions of comparable
sizes then we need to consider multiple occupancy centres. In such cases we
evaluate the velocity vector components towards each of them and take the
weighted sum of their magnitudes. The weights are determined by the fractional

area of the patch. In the current study we did not use such as approach.

Next, we resolved these vectors Eq.(iv) and Eq.(v) in a frame of reference defined
with respect to the image of the pool. The origin is set at the top left corner of the
image with right and down being the positive directions of its axis. Thus, the above

vectors could be written as
V||t = V||[;COSGdi + V"tSl.nedj Eq(V|)
VJ_t = VJ_t CcoS edi + VJJ_- SlTl edj .Eq (V”)

where 84 is the angle, 7 and j are the unit vectors along the height and width of the

image frame.

5.2.2 Analytical expression of the putative search centres obtained from

divergence in velocity-based vector fields.
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i) Vector field properties

Divergence of a vector field indicates the difference or change in flux around an
infinitesimal volume. We reason that given a vector field Vj, , the point of
convergence (“sink” in a vector field) could represent the point where the animal
intends to reach. We hypothesize that if a animal intents to reach a specific location
P; in the pool , then the velocity field would point inward from the region with
progressively decreasing magnitude (as described in the introduction) around the
point P, leading to a negative divergence value (i.e., indicating convergences) at
P;. However, in general P, need not necessarily coincide with the platform location
or occupancy centre, for they represent the centre of a region where the animal is
most likely found, and not the actual platform location. We construct the vector field
from vector projections (Eq. 1) to measure and represent the intention of the animal
to move towards the occupancy centre as a function of its position in the pool. The
heat map of the global minima of such a divergence would be indicative of the
platform location as perceived by the animal. We calculate the divergence on the
vector field describing the velocity along the occupancy centre in the image

reference frame as
d a )
Livxy) =V -V, = &V"tcosed + EV"tsmed ...Eq. (viii)

Similarly, we reason that the curl of a vector field could indicate the tendency of
rotation of an object placed at that location, and hence we propose that it could be
used to extract the tendency of the animal to circle around any point in the pool.
For completion, we describe the curl, but in subsequent analyses, we restricted our

analyses to divergence.

Curl of a field is formally defined as the circulation density at each point of the field
(i.e., the extent of rotation about a point). Thus, curl on V|, vector field would be
informative of the extent of circular movement that the animal makes about the
perceived platform location while searching for it. Using our notation, the curl can

be written as:

lij . 0 ~ .
ICuI‘l(XJ y) =V X VJ.t = (a VJ.t sin ed - EVlt Cos ed) k Eq (lX)
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i) Description of the putative search centre (Pcs)

Search centres can be obtained from the divergence calculated on the vector field

of the velocity component pointing towards the occupancy centre. The

convergence peaks in such a map are indicative of the search centres (ﬂ) or the

platform locations as perceived by the animal.

We obtain the search centre or the convergence point by estimating the minima
of the divergence on the velocity-based measure. For a two-dimensional surface,
we obtain the critical point ((x,,y,)) by equating the first derivative to be zero and

forcing the second derivative to be positive as follows:

P =/(x2 +y3) for
1) VIdiv(xo'yo) =0

i) H = Igip,, (%0, Yo)laiv,, (X0, Y0) + laiv,, (X0, ¥0)> where H > 0 and

Idivxx(xm yO) > 0.

...EQ. (X)

5.2.3 Metrics to assess spatial memory:

We define and use three measures that are independent of each other to assess

spatial memory in terms of various attributes of the search centre (P..). The three
independent measures namely, including accuracy of search, uncertainty about

the search centre, and intensity at the search centre, are described next.
i) Accuracy of the search centre (acs) (Fig. 5.1(G))

Since the search centre is indicative of the animal’s perceived platform location,
the distance between the search centre and the platform location measures
inaccuracy or error in the animal’s ability to learn and remember the platform
location. The difference in location measured in units of length can be difficult to

compare across different laboratories, since the effective pool and platform sizes
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can vary between laboratories. To address this problem, we developed a
percentage measure that can be used for comparisons of animals’ performances
across laboratories. First, we realized that the maximum error in accuracy that the
animal can make can be captured by the distance between the platform centre and
the farthest pool boundary (e). Next, we defined the accuracy of search (acs) as 1
minus the fractional error, with fractional error being the ratio between the distance
of the search centre from the platform and the maximum error. Thus, the accuracy

of the search centre is given by

e—d
o = 100 *(—CS)
e
where d s = [P, — P ... Eq. (xi)

Furthermore, to estimate the chance factor we consider the case of a naive animal
that does not have any knowledge of the platform location (e.g., an animal on its
first day of training). At this point of training, animals usually exhibit wall-hugging
behaviour (i.e., they swim in circles close to the wall). In such a scenario, the animal
is moving about the pool centre as its navigational centre, and by virtue of
symmetry the pool centre would reflect the search centre. We make use of this fact
to define the chance accuracy as the accuracy when the search centre coincides

with the pool centre and is given by

Ochancep, = 100 * g r -> is the radius of the pool

...Eq. (xii)

Thus, an accuracy value that is comparable to the chance factor (Eq. x) would
reflect whether the animal is still exhibiting symmetric navigational behaviour. As
the animal learns the rules of the water maze, this symmetry is broken.
Comparisons of accuracy with the chance factor above yield a categorical measure

of learning and memory in the maze.

ii) Uncertainty about the search centre (o) (Fig. 5.1(H))



Apart from the location of the search centre, the spread of the divergence values
around the peak provide additional insights into the level of uncertainty in the
internal representation of the platform position in the animal’s performance. We
calculated this by measuring Uncertainty about the search centre and defined it as
the full width half maximum (FWHM) of the convergence peak representing the
search centre. We assume that the convergence peak is a 2D Gaussian, and
compute the FWHM by linearising the 2D Gaussian equation as previously
described (2D Gaussian fitting macro (Fiji/lmagedJ) for multiple signals. | Blll, n.d.).
We express the uncertainty about the search centre in terms of the relative search

diameter, defined as a ratio of the major axis of the Gaussian ellipse to the platform

diameter.
Oc¢s

dps = _d
P,

...Eq. (xiii)
iii) Intensity of search (/) (Fig. 5.1(1))

The absolute search intensity (alcs), defined as the magnitude of convergence at

the search centre, is a measure of the animal’s searches in the search centre, i.e.,

al.s = _Idiv(xOryO)
... EQ. (xiv)

Additionally, we define the Relative search intensity (rlcs) as the magnitude of
convergence at the search centre normalised to the maximum convergence seen
anywhere in the pool. We propose that this measure reflects the fractional effort of

the animal’s search at the search centre.

I . . . . .
rl. = Ii les-> ldiv (Xo0,y0) and Imax -> is the maximum divergence inside the pool.

max

...Eq. (xv)

97



5.3 Results

5.3.1 Swim trajectories described as velocity vector fields reveal that the
speed of intentional movement varies over the pool space as a function of
training.

In an effort to assess the quality of spatial memory, we first seek to describe the
movement of the mice using the most fundamental kinematic measure, namely, its
velocity. For this, we use previously published water maze data (Lee et al., 2014)
from Noonan syndrome(NS) mice and their littermate controls (Ptpn11 +/+). Using
the time series of position data obtained from swim trajectories, we construct
velocity vectors (Eq. iii, Fig. 5.1C). These vectors describe the distance covered
per unit time as the mice search for the platform (Fig. 5.2 (A-D)). When we measure
the magnitude of the velocity vector (speed) as a function radial distance from the
platform, we note that it is invariant across space when the mice have no
knowledge of the platform location (Fig. 5.3(A)). However, we see that, after
training, the speed of the mice reduces closer to the platform during the probe trials
(Red arrows in Fig.5.3 (B), (C), (D)). The speed of the mice also reduces when it
is close to the pool boundary. We reason that studying the variation of speed
across the spatial dimension will reveal the regions at which the mice slow-down
in their effort to locate the platform. Specifically, we assert that the divergence on
the velocity vector field will reveal the “sources” and “sinks” in that field, i.e., regions
where the mice swim away from with high speed (divergence points) and regions
where the mice swim into with low speed (convergence points). As a general case,
we recognise at any given instant only a part of rodent's movement and not
necessarily the entire movement may be oriented along its intended direction.
Given this scenario, we generate a vector field around the point in the pool where
the mice are most likely to be found, i.e., the occupancy centre. We argue that the
regions of low residence typically result from incidental occupancy of these
locations merely by being on the navigational path of the mice rather than being
the locations where the mice intend to go. We identify the high occupancy regions
as the regions where the mice intend to stay. We use maximum entropy to
demarcate these regions as the regions where the mice are more likely to sample.

We calculate the centre of mass of these most likely occupied regions to get the



occupancy centre as shown in Fig 5.2 (E-H) for Ptpn11 +/+ mice on training day 1
as well as probe days 3, 5 and 7. Utilising this occupancy centre, we describe the

swim trajectories in terms of velocity vector component along the occupancy centre
(Eq. (vi)).

We reasoned if our assertion that a part and not necessarily the whole of the
movement is utilised is true, then we might be able to see a change in this fraction
as a function of training. In line with our assertion, we see that the mice show
movements that are more aligned to the occupancy centre during the probe trials
(Fig. 5.3 (F-H)) compared to the training (Fig. 5.3 (E)). Thus, we utilise the velocity
vector component defined as in Eq. (vi) to construct vector fields and measure the
divergence (Eq. (viii)). Fig. 5.3 (l) depicts the surface of divergence estimated using
the wild type mice for the training day (D1) (Left panel) and probe day 7 (PD7)
(right panel). We can clearly see the valley that emerges near the platform location

as the mice acquires spatial memory.

5.3.2 Negative divergence in vector field of velocity component along the
occupancy centre, rather than velocity itself, describes the putative search

centres as convergence hotspots for a given swim pattern.

We construct a velocity vector field based on the movement of the mice during a
probe trial to describe their swim pattern. Together with the velocity vector field, we
construct a vector field of the velocity component along the occupancy centre
(Eq.vi). We rationalise that the velocity component along the occupancy centre
quantifies the effect of an intentional movement towards the occupancy centre. We
determine convergence peaks on these vector fields. Given our assertion that for
a given swim pattern, a convergence peak represents the point that the mice swim
to, the convergence peak is a proxy for the perceived platform location as it
represents the putative search centre of the mice. We generate such a
convergence heat map for an individual mouse as well as a population of mice. A

schematic of the workflow is presented in Fig. 5.4.

We show the velocity vector field maps for an individual Ptpn11+/+ mouse in Fig.
5.5 (A) as well as the velocity vector field for a population of Ptpn11+/+ mice (n

=15) in Fig. 5.5 (C) for their trajectories on probe day 7. We see the divergence
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map calculated on the vector field shows the presence of convergence peaks near
the platform (Fig. 5.5 (F) and (H)). In comparison, the divergence map calculated
on the velocity component shows a sharp, well-defined convergence peak near the
platform for both individual and population trajectory (Fig. 5.5 (1), (J) and (L)). The
spatial sampling of the pool during probe trial by an individual mouse is sufficient
to detect convergence peaks, thus allowing us to identify putative search centres
for each individual mouse. However, we use the trajectory from a group of mice to

establish the method (presented in Chapter 6).
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5.4 Discussion

In this chapter, we develop and present a new method to describe spatial memory
in a navigational task based on timestamped xy trajectories. We hypothesize that
using velocity-based vector fields and its properties allow us to pin-point putative
search centres of the animal in the arena. On determining the search centre, the
spatial memory can be described using three components or metrics: accuracy of
search centre to the target location, uncertainty of the search or the spread in

search area, and the intensity or the extent of effort in search.

We note that these three measures are independent of each other and are
sufficient to quantify spatial learning and memory. To illustrate this, we consider a
real-life navigational task of visiting a café located block “A” between intersections
“I” and “II”. In this context if the person remembers and goes to block “B” then
accuracy captures the difference between the true location of the café and the
actual location person went to. On reaching the place and not finding the café the
person back tracks and searches around the place. The extent of area within which
the person searches reflect their own estimate of how erroneous their memory for
the location is. In this example the person knows the café is between two
intersections but does not remember the block. Uncertainty captures this effect in
our measure. Finally, the intensity of the search at block “B” captures the probability
and hence the intention of that the person to target the search for the café at that

point.

Moreover, we reason that the metrics proposed here reflect the true nature of
spatial memory. For example, whether animals use single or multiple search
strategies in a trial, the combined effect of the search results in swimming toward
a particular region or location. This effect of swimming toward the location will be
detected as a convergence peak or hotspot, i.e., divergence field property is not
preferentially sensitive or dependent on a particular search strategy. Additionally,
since divergence measures the change in velocity in space, differences in absolute
speed between strains of animal will not affect the measure, i.e. the divergence
field property can dissociate a memory deficit and a motor deficit. Differences in
swim speed affect many of the conventional measures as speed determines the

occupancy and area coverage. We note that moderate differences in swim speed
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does not affect training as the animal are left in the pool until they reach the
platform. Both fast as well as slow swimmers reach platform during training. On
learning the platform location, the animal reaches the platform in 1/10" of the
maximum training duration thus only animal that are considerably slower (>10
times as slow) do not reach the platform by themselves affecting their learning. On
the other hand, conventional measures such as quadrant, platform crossing and
proximity being dependent on occupancy gets affected by changes in swim speed.
However, divergence of vector field as set-up here measures how the vectors are
changing in space rather than measuring the magnitude of the vectors thus
minimizing if not eliminating the effects of difference in swim speed. Thus, the
proposed metrics based on divergence of vector field improves the sensitivity of
memory detection by uncoupling the effects of non-memory related processes from

spatial memory.

Standardisation of behavioural tasks to minimise variability seen in experimental
cohorts across different labs has been a difficult issue to solve in the field of
behavioural neuroscience (Crabbe et al. 1999). In this context, we speculate that
laboratory induced variation in mouse performance could be compared
meaningfully since the proposed method quantifies memory using three measure
that are independent of each other. While we have presented the description,
derivation, and potential utility of both the divergence and curl vector field
properties, we focused on developing and highlighting the power of the metrics

derived from divergence vector field property for the current study.
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5.5 Materials and Methods

5.5.1 Animal information

The data from fifteen male NS mice wild type littermate (Ptpn11 +/+) were used for

the analysis presented in this chapter.

5.5.2 Description of water maze paradigm

The NS mice were trained as reported previously (Lee et al., 2014). Briefly, training
sessions comprised 4 trials (2 blocks with 2 trials each) per day with 1-min inter-
trial interval and 45-min inter-block interval. Mice were allowed to search the
platform for 60 s or until reaching the platform. The probe tests were done

immediately after the completion of training on days 3,5, 7.

5.5.3 Generation of velocity-based vector field via surface fit:

We describe the swim trajectories in terms of the velocity component along the
occupancy centre for all pixels sampled by the mice. The value at each pixel is
normalised to the number of times it has been sampled, i.e., the mean value at

the pixel.

We perform a 5" order polynomial surface fit (ImageJ Polynomial Surface Fit
plugin) using an ROI of sampled pixels. The resultant surface is a continuous
surface representing the velocity-based vector field. We require that the fit
interpolates values for unsampled pixels within the sampled pixels ROI to
compute the partial differential along the horizontal and vertical axis of the pool
reference frame. Since the regions outside the ROI are not sampled, we do not
consider it to be a part of vector field. We modified and used the Differentials

Plugin (Unser, 1999) in ImageJ to obtain the components of divergence.

5.5.4 Estimation of error in generated velocity-based vector field:

The error in 51" order polynomial surface fit is described by estimating the goodness
of surface fit. The reduced chi-sq (x3) describes the variance in the velocity-based
measure among the population of mice as well as the variance in the estimate of

fit values at each pixel.
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n (yl - (xi))z
XZ =1 Giz

v n—m

where yi; is the actual value at the pixel j, y(x;) is the fit value at the pixel i, 0/ is the
variance in velocity-based measure value at the pixel i. v is the degree of freedom
defined as the difference between the number of points sampled on the surface (n)
minus the number of fitted parameters (m). In case of a 5" order polynomial
equation, there are 14 coefficients or fitted parameters, hence the degree of

freedom v =n- 14.

5.5.5 Estimation of error in field properties:

We represent the estimated error in the field properties as a percent error in

residual of the surface fit.

n
Residual sum sq = RSS = z(yi - y(xl-))2

i=1

o wi(y — y()”
Weighted residual sum sq = wRSS = Z a4l i

i=1 i=1 Wi

where w; =

Q-

i()’i - Y(Xi))z
Vi e Wi

= w
Percent error = 100 Z

i=1
where y; is the actual value at the pixel i, y(x) is the fit value at the pixel i, 0 is
the variance in velocity-based measure value at the pixel i.

Hence, we calculate the total error at each pixel of the field property as the sum
of the fractional errors contributed by the x- and y-components with respect to the

pool reference frame, given by,

o; = /0§+032,

We utilize the mode of the distribution of error values to best represent the most
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likely error estimate. We propagate this mode value of error when representing the
derived parameters/metrics, i.e., accuracy of search, uncertainty of search and

intensity of search

5.5.6 Identification of putative search centres:

We identify the putative search centre as the global minima of the divergence heat
map. The obtained divergence heat map is separated into two images, each
containing either only positive values (divergence values) or negative values
(convergence values). The image with negative values is inverted to convert the
minima to maxima for visual representation. Next, we normalize the intensity value
to the maximum intensity value. We locate the maxima using the ImagedJ’s plugin
Maximum Finder class. The algorithm is set such that a maximum is identified if
and only if the point has a peak value difference that is more than 0.1% and that

the point is not an edge.

5.5.8 Statistical analysis:

All statistical analysis was carried out in Origin (v2020b or 2021b). To perform two-
way ANOVA on summarised statistics (i.e., ANOVA using mean and SEM), the raw
data was recreated for ‘n’ individual mice by randomly sampling from a normal
distribution using the population mean and SD of the metric being analysed. Based
on ANOVA results, post hoc analysis was performed to carry out pair-wise
comparisons. The data distribution was assumed to be normal. All data are

represented as mean + SEM.
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5.6 Figures

A O(0,0) X axis

Figure 5.1: Schematic representation of the coordinate system used to describe the water
maze pool and mouse trajectory as a velocity vector field. Three metrics derived from the
velocity vector field that we define, and use, measure the quality of the spatial memory,
namely accuracy, uncertainty, and intensity of search.

(A) The co-ordinate system and the reference frame that is used to represent the video frame data
point acquired from a trial/session of a navigational behaviour. Origin of the coordinate system (O
(0,0)) is located at the top left corner of the image. P (red arrow) is position vector of the platform
(pink circle) centre.

(B) We define a position vector Pt (orange vector) as the point at which the mouse is located at a
given time/video frame (f). Thus, the current position of the mouse to the platform location is given
by the displacement vector Dt (purple vector).

(C) Velocity vector V: (light purple vector) is calculated as the difference in displacement vectors
obtained from consecutive video frames. The velocity vector describes the movement of the mouse.

It is used as the base measure for developing three metrics for assessing spatial memory and its
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retention.

(D) Resolving velocity vector into its components, a component along a vector pointing towards the
platform from current position (V;p, =V, cos 6v, green vector) measures the mouse’s movement
that contributes toward or away from the platform. In this schematic the component is pointing away
from the platform.

(E) Similarly, the velocity vector component orthogonal to the above component could represent
the movement contributing to circular motion of the mice centred about the platform (V,p, =
V, sin 6v, green vector).

(F) However, to assess the quality of spatial memory, we resolve the velocity vector into its

components with respect to the occupancy centre (ﬁoc) given by the centre of mass (COM) of
occupancy. COM calculated on a maximum entropy thresholded occupancy image and
represents the most likely regions occupied by the mouse during probe trial. We create a vector
field from these components to describe the mouse’s intentional movement towards the
occupancy centre as well as the extent of circling about that point. Analysing the field properties,

namely divergence and curl, allows us to assess the spatial memory. The divergence heat map

reveals convergence hotspots, the peak of which represents the putative search centres (ﬁcs).
(G) We define accuracy in spatial memory (acs) as a measure that reflects the accuracy with which
the mouse remembers the platform location. It is expressed as percentage of 1 minus the
fractional error, where the error (dcs) is the displacement between the search centre P.s and the
platform location PL, and the maximum possible error (e) is the displacement of the farthest
boundary/periphery of the pool from the platform.

(H) We define our second metric, uncertainty in search, as the spatial spread of the search (Ocs),
defined as the full width half maxima (FWHM) in x and y axis of the convergence peak. We
describe the uncertainty in terms of relative search diameter (drs), where the search diameter is
normalised to platform diameter (dpL).

(I) Lastly, intensity of search (lcs) reveals the intensity or intent with which the mouse moves to
the search centre. The absolute intensity of search (alcs) is represented by the convergence value
at the search centre, whereas the relative intensity of search (rl) is the convergence value
normalised to the maximum convergence value in the pool space. Since the convergence value
looks at the rate of change of the velocity vectors in a small area, the measure is not confounded

by differences in swim speed among mice.
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Figure 5.2: Velocity vector field, residence time heat map defines the occupancy centre.
The occupancy centre (ﬁoc) is shown for the population data of Ptpn11+/+ wild type mice.

(A)-(D) show the velocity vector field on training day 1 (D1), probe day 3 (PD3), probe day 5 (PD5)
and probe day 7 (PD7) respectively. LUT scale: 0 — 8 in pixels/frame.

(E)-(H) show the occupancy heat map on D1, PD3, PD5 and PD7 respectively. The region enclosed
in black outline represents the most likely region of occupancy obtained using maximum entropy
threshold (see Theory for details.) Based on the most likely region, the occupancy centre is
calculated (shown as a red point). The position vector of this point in the image reference frame is
shown as white arrows. See Supplementary Figures S1 and S2 for velocity vector field map,
residence time heat map showing most likely occupied region, and occupancy centres for all
strains/datasets used for analysis in this study. The images are Gaussian blurred (radius = 6) to

approximate the point object to real world dimensions
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Figure 5.3: Divergence maps identify putative search centres or “sinks” as a result of
differential distribution of velocity:

(A)-(D) The solid shapes (circles, squares, and triangles) are the magnitude of velocity (R-Vel)
measured as a function of radial distance (R-Dist) on training and probe days (D1, PD3, PD5 and
PD7 respectively). On D1 the speed of the mice is invariant across space as the scatter plot is
almost parallel to the x axis representing the distance from the platform. With training, the speed of
the mice is reduced near the platform and boundary (r — 0 or r —» 200 pixels). R-Dist is in bins of
0.5 pixel and R-Vel represented as an average of all the times the animal traversed that bin.
(E)-(H) Histogram of efficiency of movement toward occupancy centre, given by V/V4, in Ptpn11
+/+ mice on D1, PD3, PD5 and PD?7 indicated as a function of training. The fraction of the
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movements oriented along the occupancy centre increases as shown by the counts in bins -1
(aligned completely but away from occupancy centre) and 1 (aligned completely toward the
occupancy centre).

(I) Surface plot of divergence measure that is developed in theory generated using dataset Ptpn11
+/+ mice on Day 1(left) and on PD7 (right) shows that spatially uniform progressive reduction in
speed leading to convergence peaks (negative divergence seen as valleys). Such convergence
peaks are analogous to sinks in electro/fluid dynamics. On Day 1 the divergence surface is largely
invariant across the pool surface except for a mild depression at the centre and at periphery of the
pool. On probe day 7, as the mice acquires the spatial memory for the platform location the surface

changes its shape and has a clear valley centred around the platform location.

Figure 5.4: Workflow to generate divergence heat map revealing convergence hotspots.

(A) shows the population velocity vector field (n = 15 mice, data points = 8997 frames).

(B) shows the occupancy heat map. Using maximum entropy auto thresholding, the area for
estimating COM of occupancy is determined (demarcated in black ROI). Occupancy centre is

marked as a red dot. The red arrow indicates the position vector of the occupancy centre.
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(C) and (F)Using the velocity vector field and the occupancy centre, velocity vector component
along the Poc (V) was generated for spatially resolved components of the velocity vector, i.e. x-
Image and y-Image. The x-Image (C) is the component along the horizontal axis, whereas the y-
Image (F) is the component along the vertical axis.

An ROI encompassing the pixels that have been sampled is used to obtain an image that is a 5t
order polynomial surface fit (D and G), thus obtaining a surface describing the velocity-based
movement towards the occupancy centre. The change in measure along the horizontal or vertical
axis is obtained by taking the differential with respect to x-axis or y-axis. We maintain the calculated
values in the pixels that were sampled. (E)shows the differential with respect to x-axis for the x-
Image, and (H)shows the differential with respect to y-axis for the y-Image, for the pixels sampled
by the mice.

Adding the differential images (E) and (H) gives the divergence map as shown in (I). A smooth
surface (J) representing the divergence values continuously in space is obtained after a 4" Order
surface fit on (l). The divergence map (J) is split into an image with only positive values to represent

the points of divergence (K), and only negative values to represent the convergence hotspots (L).

Figure 5.5: Component of the velocity along the occupancy centre and not the velocity is

better at identifying putative search centre.
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(A) and (C) show the velocity vector field maps for an individual Ptpn117+/+ mouse and a population
of Ptpn11+/+ mice (n =15) on PD7 respectively.

(B) and (D) show the occupancy map for individual and population of mice. The most likely region
is demarcated as a black outline in (D). This region is identified based on maximum entropy
segmentation for the population representation. Subsequently, the occupancy centre is estimated
and shown as a red arrow in both (B) and (D).

(E) and (G) are the velocity magnitude heat maps for the individual mouse and population
respectively. Divergence calculated in Cartesian coordinates is used to generate a map and is
placed inside the pool image. Bounding rectangle is used to orient and place the divergence map
inside pool. The generated velocity vector fields reveal the search centres as convergence hotspots
as shown in (F) and (H).

In comparison, (I) and (K) represent the heat map representing the magnitude of velocity vector
component along the occupancy centre for individual mouse and population, respectively. The
divergence calculated as above using these vector fields are placed in the pool image and resultant
images show prominent and localised convergence hotspots identified by boundary in blue dashed
lines. We term these convergence hotspots in velocity component maps as the putative search
centres (Pcs). We use the vector field representing the population of mice during a session in
subsequent analysis for identifying the search centre.

Blue ROI marks the pool perimeter and red ROI marks the platform. Vector field map (A and C)
LUT scale: 0 — 8 pixel/frame.
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CHAPTER 6

Comparative analysis of spatial memory in different mouse

strains using Morris Water Maze task

Abstract

In the previous chapter, we developed a framework for describing the search
pattern of animals in a navigational task using vector field and their properties. We
characterised spatial memory using three metrics: accuracy, uncertainty, and
intensity of search. Here, we use the framework to detect and distinguish spatial
memory in different strains of mice. The first dataset compares the spatial memory
in two albino strains of mice (BALB/cJ and SWR/J). We see that BALB/cJ and
SWR/J mice learn the platform location at different rates in MWM paradigm. Next,
we demonstrate a wider applicability of our method by analysing two strains of mice
(C57Bl/6J and DBA/2J) trained in a goal reversal task. Our analysis clearly
demonstrates that the accuracy of the search is high and is preserved for both old
and new platform locations while the intention of search is higher for the new
platform location. In summary, the proposed metrics resolves the information of
spatial memory into measurable independent components, enabling us to
differentiate memory representation that are normally not possible to elucidate from

conventional measures.
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6.1 Introduction

Animal models are widely used in neuroscience as it allows investigating the
molecular, cellular and network level mechanisms of different cognitive tasks that
cannot be carried out in human subjects (Rosenthal & Brown, 2007). There are
multiple criteria that an animal model need to satisfy and one of them being that
their endophenotype is equivalent of the human version of the illness (Bedell,
Jenkins, et al., 1997; Bedell, Largaespada, et al., 1997; Justice & Dhillon, 2016).
In these cases where the role of a specific gene or disease model is studied, the
mice are inbred to maintain a homogenous genetic background such that an
experimental design and its results and inferences are not influenced by other
genetic factors. Typically, the genetic background and hence the mouse strain
used for deriving the mouse model is dictated by practical considerations. Thus, it
is vital to establish a baseline response of inbred mice strains using a battery of

behavioural tasks.

Comparative studies between different strains of mice helps to establish the best
strain that are suited for different behavioural tasks (Crawley et al., 1997; Upchurch
& Wehner, 1988). For example, C57BIl/6J strain are suitable for hippocampal
dependent tasks such as contextual fear conditioning or Morris water maze,
however they are not the most suitable for auditory fear conditioning since their
hearing decline with age. In contrast, DBA/2J have been shown to have poor
performance in CFC and MWM, possibly due to functional differences in
hippocampal formation, but are suitable for auditory fear conditioning (AFC) (Paylor
et al., 1994).

Strain comparisons for MWM performance assessed via quadrant-based
residence time shows that C57BI/6J and DBA mice learn the WMW whereas
BALB/cJ show poor performance (Brooks et al., 2005). The finding supports
previous reports that C57BI/6J are good learners (Stavnezer et al., 2002).
However, the swim speeds vary among strains thereby making these comparisons
difficult and ineffective. For example, in a study, BALB/cJ strain are the slowest to
reach a marked platform, with DBA/2J strain swimming faster than BALB/cJ, and
C57Bl/6J being the fastest swimmer (Brooks et al., 2005). The variation in speed

could affect the quadrant-based residence time computed to assess memory for
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platform in the hidden version of the MWM. Additionally, SWR/J strain of mice have
been shown to have retinal degeneration, which affects their visual acuity
(Wahlsten et al., 2005). Hence, we predict that these mice may perform poorly in
MWM task.

A modified version of the MWM is the goal reversal task. Here, the platform is
usually shifted to a different position in space that is sufficiently distinct. Thus, in
the new configuration the new platform location is different while the spatial cues
remain intact. The task tests for the flexibility of the animal in learning the new
location and its ability to shift the search strategy from the old platform location to
the new location, i.e., the ability to reverse the rules that have been learnt
previously. Rule reversal learning has been adapted for other behavioural tasks
involving forced 2-choice. For example, reports show that DBA strain perform
better than C57BI6 in rule reversal learning carried out in an odour discrimination

(Mihalick et al., 2000) as well as a visual discrimination(Brooks et al., 2005).

In this context, we compare the spatial memory of two strains of albino mice in a
reference version of the MWM. We assess the memory in terms of the metrics
developed in Chapter 5 and contrast it with three measures used in the field:

residence time, proximity, and entropy.
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6.2 Results

6.2.1 Accuracy, uncertainty and intensity of search centres distinguish the
nature of spatial memory between two albino strains of mice: BALB/cJ and

SWR/J.

We analysed the WM swim trajectories of the BALB/cJ and SWR/J mouse strains.
The divergence heat maps show a distinct convergence hotspot for both, BALB/cJ
(n = 10) and SWR/J (n=9/10), groups of mice on all three probe days (i.e., PD3,
PD7 and PD10 (Fig. 6.1 (A-D)). On calculating the accuracy in search for BALB/cJ
mice, we observed as expected that the accuracy increases progressively and
reaches an asymptote with additional training (Fig. 6.1 (E), Green solid bars, dcs =
80 + 2.2% (PD3), des = 91 = 1.3% (PD7), aes = 95 + 1.5% (PD10)), reflecting
accurate knowledge of the platform’s location. Comparatively, SWR/J mice show
an accuracy worse than chance levels (as defined in the theory section Eq. (xii))
on a probe trial at day 3 (PD3) and PD7, indicating that the mice are searching
away from both the pool centre and the platform’s location. Further training of
SWR/J mice marginally improves the accuracy on PD10 (Fig. 6.1 (F), Blue solid
bars, acs = 51 £ 0.66% (PD3), acs = 61 £ 1.15% (PD7), dcs = 74 + 1.41% (PD10)).
The occupancy-based quadrant and platform measures show that SWR/J mice do
not preferentially reside in the target quadrant (P4/Q4) on PD3, but with training,
these mice preferentially reside in the training platform zone on PD10 (Fig. 6.2 (H),
(J)). However, our analysis of swim trajectories shows that these mice focus their
search away from both the platform location and the pool centre, indicating that
they lack a specific, localised spatial memory of the platform’s location. However,
on PD10 these mice do show signs of having acquired a specific spatial memory

for the platform’s location.

Additionally, the relative search diameter increases as a function of probe trials for
both BALB/cJ and SWR/J mice (Fig. 6.1 (G), BALB/cJ: Green diagonal bars, &rs =
7 + 0.20(PD3), drs = 9 = 0.13 (PD7), 6rs = 10 £ 0.17 (PD10) and Fig.6.1 (H),
SWR/J: Blue diagonal bars, 6rs = 3.17 £ 0.04 (PD3), drs = 12.50 £ 0.24 (PD7), &rs

=51 0.28 (PD10)). With training, their search strategies around the search centre
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appear to shift from focussed and localised searches to more diffused and

generalised searches.

For BALB/cJ mice, the search intensity is highest on the first probe trial (PD3; Fig.
6.5 (1), Green hatched bars, rlcs = 61 £ 2%). Combined with the accuracy value,
these two measures suggest that the mice have learned the platform location and
concentrate their searches in the correct location. However, on PD7, there is a
reduction in the intensity of the searches (rlcs = 25 + 0.4%). Since the accuracy of
the search centre is high (>90%), the reduction in intensity could possibly be due
to a memory of searching for the absent platform in PD3. The results suggest that
the memory of the platform location is intact, but that the intention to locate it is
reduced because there may be some acquired knowledge during PD3 that it may
be absent from the pool. On PD10, the mice show an improvement in search
intensity (rles = 40 + 0.6%), potentially reflecting the effect of continued extended
training between PD3 and PD10.

In SWR/J mice, the intensity of search improves from PD3 to PD10 (Fig. 6.1 (J),
Blue hatched bars, rlcs = 6.6 £ 0.086% (PD3), rles = 11.5 £ 0.22% (PD7), rles = 59.3
+ 3.38% (PD10). The extent of this search intention is poor (<50%) for PD3 and

PD7, reflecting poor spatial learning.

Thus, using convergence peaks as search centres, we can describe and compare
the quality of spatial learning and memory across different probe trials for different
strains of mice. From our comparisons, we find that the BALB/cJ mice perform
better in the MWM than the SWR/J strain of mice.

6.2.2 Spatial memory of old platform location and new platform location

is preserved in C57BI/6J and DBA/2J mice trained in a goal reversal task.

Next, we analyse a publicly available dataset (Overall et al., 2020) containing two
strains of mice (C57BIl/6J and DBA/2J) trained in a goal reversal task to highlight
the power of the current vector field property-based measure in detecting search
centres. We hypothesize that in such a task involving platform switching, the mice
possess memories of both the old (conflict) and new (target) platform locations,

and that due to recency effect, they bias their search to the new platform location.
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Previously it has been found that DBA/2J mice perform differently in contextual
memory tasks compared to other inbred strains due to functional differences in the
hippocampal formation. In line with the above finding, we find that DBA/2J perform
poorly in that, they do not show the presence of a specific search centre on PD3
(Fig. 6.3 (C)). In comparison, C57BI/6J learn the platform with an accuracy of 86 +

3 %, relative search diameter of 4.4 + 0.15 and relative search intensity of 100 + 3
(Fig. 6.3 (A), (E), (G), (1)).

As predicted, our method successfully reveals the presence of two convergence
peaks or search centres on probe day 5 (PD5). The search centres correspond to
the memory for the target location, i.e., the platform in north-east quadrant on
training days 3 and 4, as well as memory for the conflict location, i.e., the platform
in the south-west quadrant on training on days 1 and 2 (Fig. 6.3 (A-D)). Quantifying
the search centres in terms of accuracy, uncertainty and intensity of search reveals

the difference in nature/properties of the two memories.

We do not see a difference in accuracy of the search centres to their respective
platform positions, i.e., search centre near the target location (Peak#1 new) and
search centre near the conflict location (Peak#2 old). We conclude that since the
mice recall the old as well as the new platform location with similar accuracy, the

strength of memory for both the locations is high (Fig. 6.3 (E-F)).

In C57BI/6J mice, we see that the relative intensity of search (rlcs) at the search
centre corresponding to the new platform location, Peak#1 new, is significantly
higher than the relative intensity of search corresponding to the old platform
location, Peak#2 old (Fig.6.3(l)). We infer that the recency effect of the new
platform location biases the mice to search more intently in the target location.
However, when it does not find the platform at the target location, it also
investigates the conflict location, although it spends considerably less time in its
search here. Similarly, we see the relative intensity of search (rlcs) at the search
centre corresponding to the new platform location, Peak#1 new, is slightly higher
than the relative intensity of search corresponding to the new platform location,
Peak#1 old in DBA/2J mice (Fig. 6.3 (J)). We infer that the mice search both
platform locations, though it prefers to search at the new platform location slightly

more intensely. Similar to C57BI/6J, the DBA/2J mice search at the most recent
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training location, although they never truly learnt the first platform location.

Since the purpose of this study was to determine whether training resulted in goal
reversal, we defined a goal reversal efficiency measure (GRE) as rlcs at the new

location subtracted by the rlcs at the old platform location divided by the sum of rlcs

rICSpew—TICSp14

at both the old and the new platform locations (GRE = ) A ratio of 1

rICSpew+TICSo1d
in this measure would indicate goal reversal, while -1 would indicate no reversal,
and 0 would mean no learning. We find the goal reversal efficiency for C57BI/6J to
be ~0.78 and DBA/2J to be~0.15, indicating that C57BI/6J are more adapt at goal

reversal than DBA/2J mice.

6.3 Discussion

We utilized the swim trajectories from different mice datasets performing Morris
water maze task to illustrate the sensitivity and advantage of the newly proposed
metrics. Analysing swim trajectories using the proposed metrics enabled us to
detect memory deficits in different datasets of MWM task. We showed difference
in strength of spatial memory for two different mice strains subjected to the same
training paradigm (BALB/cJ and SWR/J). We also investigated whether the
divergence field property on velocity-based measure could detect the presence of
multiple search centres or spatial memories by analysing dataset of MWM goal
reversal task. We see that the two strains of mice C57BI/6J and DBA/2J, when
trained in a reversal learning scheme involving two platforms, show the presence
of two search centres, corresponding to the old/conflict as well as the new/target
platform location. We are able to quantify the difference in strength or nature of
these two spatial memories in terms of the extent of intention of search at their two
locations or search centres, showing that both strains of mice prefer to search at

the most recently trained platform location.
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6.4 Materials and Methods

6.4.1 Animal and behaviour paradigm information

BALB/cJ (Stock no: 000651) and SWR/J (Stock no: 000689) inbred mice were
obtained from Jackson Laboratory, USA and maintained at the Central Animal
Facility, 1ISc. All protocols were approved by the Institute Animal Ethics Committee.
10 mice of each strain were trained in MWM task, and probed from spatial memory
on days 3, 7 and 10.

5 ten-week-old female mice of C57BI/6J (JAX Stock no: 000664) and DBA/2J (JAX
Stock no: 000671) were trained in a goal reversal task as previously reported in
(Overall et al., 2020). Briefly, Mice were trained for 6 trials per day for 3 days. For
goal reverse task, mice were trained at the reversed goal location for 2 days. Days

3 and 5 were probe ftrials.
6.4.2 Generation divergence heat maps and estimated of search centre

Divergence heat maps and the putative search centres were calculated as
developed in chapter 5 (Fig. 5.4, Section 5.5.3, Section 5.5.6).

6.4.3 Estimation of full width half maximum (FWHM) of convergence peak:

We estimate the FWHM of a convergence peak as previously described (2D
Gaussian fitting macro (Fiji/lmaged) for multiple signals. | Blll, n.d.). Briefly, the
identified putative search centre is fit to a linearised 2D-gaussian function to obtain
the FWHM in x- and y-axis. The size of the peak is initialised to 20 pixels before
performing custom fit using ImagedJ’s Curve Fitter class implementing Simplex

algorithm.

6.4.4 Statistical analysis:

All statistical analysis was carried out in Origin (v2020b or 2021b). To perform two-
way ANOVA on summarised statistics (i.e., ANOVA using mean and SEM), the raw
data was recreated for ‘n’ individual mice by randomly sampling from a normal
distribution using the population mean and SD of the metric being analysed. Based

on ANOVA results, post hoc analysis was performed to carry out pair-wise
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comparisons. The data distribution was assumed to be normal. All data are

represented as mean = SEM.
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6.5 Figures
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Figure 6.1: Description of spatial memory in BALB/cJ and SWR/J strain of mice using the
three parameters: accuracy («), uncertainty (8s), and intensity of search (I.).

(A) and (C) are the divergence heat maps showing the convergence hotspots for the population of
BALB/cJ (n=10, A) and SWR/J (n = 9-10, C) mice, respectively, on probe day 3 (PD3), probe day
7 (PD7) and probe day 10 (PD10).

(B) and (D) are the error heat maps of the calculated divergence within the population of mice of
BALB/cJ (B) and SWR/J (D) mice. A 2D Gaussian smoothing of radius = 5 (BALB/cJ) or 10(SWR/J)
is used for visual representation. Pool perimeter is shown as a blue circle and the platform location
is shown as red circle.

(E) and (F) describe the accuracy of search centre for BALB/cJ (E) and SWR/J (F). The accuracy
in search increases to maximum asymptotically across probe trials for BALB/cJ mice (Green solid
bars, a = 80t 2.2 % (PD3), a = 91 £ 1.3 % (PD7), a = 95 £ 1.5 %(PD10)) as expected.
Comparatively, SWR/J mice show poor accuracy for the platform below chance level (defined in
theory) on PD3 and at chance on PD7 (One-sample t-test, PD3: p < 0.001, PD5: p > 0.05) whereas
it shows an improvement in accuracy (p < 0.001) on PD10 (Blue solid bars, a = 51 + 0.66 (PD3), a
=61x1.15(PD7),a =74 = 1.41 (PD10)). Dashed line shows the chance accuracy value (BALB/cJ:
63%, SWR/J: 62%). Two-way ANOVA with mice strain and training (measured across probe days)
as factors revealed that accuracy is significantly different among the mice strain (F1,52 = 467, p <
0.001), and across training ( F2,52 = 82, p < 0.001), however with a significant interaction between
the mice strain and their training ( F2,52 = 5.66, p< 0.01). Subsequent post hoc analysis indicated
that BALB/cJ and SWR/J mice improved its accuracy over training. Based on the difference in
accuracy, we conclude that BALB/cJ are better learners than SWR/J mice.

(G) and (H) describes the uncertainty in search centre as relative search diameter (0RS) for

BALB/cJ and SWR/J mice respectively. The search strategy around the search centre appears
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focused in nature on PD3 for BALB/cJ (Green diagonal bar, 8RS = 7 £ 0.20). In case of the SWR/J
mice, although the search centre is inaccurate, its search is focused (Blue diagonal bar, 8RS = 3.17
1 0.04). The relative search diameter increases on subsequent probe trials, indicating that both
strains of mice use a more diffused search strategy in later probe trials (BALB/cJ: Green diagonal
bars, 8RS =9 + 0.13 (PD7), 8RS = 10 + 0.17 (PD10) and SWR/J: Blue diagonal bars, 6RS = 12.50
£0.24 (PD7), 8RS =5 £ 0.28 (PD10)). Two-way ANOVA for uncertainty with mice strain and training
showed that the means of the strains are significantly different ( F1,52 = 217, p < 0.001 ), training
had an effect (F2,52 = 586, p < 0.001) however the effect of training is different among the strains
as there is an interaction (: F2,52 = 504, p < 0.001) between these factors. Post hoc analysis
revealed that the search diameter shows a differential change as function of training.

(I) and (J) represents the relative search intensity (rlcs) for BALB/cJ and SWR/J mice. Since the
relative intensity of search is obtained from normalising the absolute intensity at search centre with
the maximum intensity observed during the session, we can compare the relative intensity across
datasets that have been sampled at different frame rates. In BALB/cJ mice, the relative search
intensity on the PD3 is the highest (Green hatched bars, rics = 61 + 2%). However, on PD7, the
intensity of search reduces (rlcs = 25 £ 0.4%) possibly due to effect of extinction but recovers and
increases at PD10 (rlcs = 40 + 0.6%). In SWR/J mice, the intensity of search improves with probe
trials (Blue hatched bars, rlcs = 6.6 £ 0.086% (PD3), rlcs = 11.5 £ 0.22% (PD7), rlcs = 59.3 + 3.38%
(PD10)) though the overall extent of this search intention is poor (<50%). Two-way ANOVA for
relative search intensity with strain and training as factors showed that the search intensity
significantly differed both as function of strain (F1,52 = 488, p < 0.001) as well as training (F2,52 =
608, p < 0.001) with a strong interaction (F2,52 = 835, p< 0.001). Post hoc analysis substantiated
our interpretation stated above.

(K) represents the absolute search intensity (alcs) for BALB/cJ on PD3, PD7, and P10. In BALB/cJ
mice, the intensity of search is given in green horizontal bars, alcs = 6.5E-5 + 1.8E-6 (PD3), alcs =
4.4E-5 = 6.6E-7 (PD7), alcs = 1.1E-4 + 1.7E-6 (PD10)). One-way ANOVA for absolute search
intensity showed the means of the absolute search intensity are significantly different (F2,27 = 488,
p < 0.001). Post hoc analysis established that the differences between the probe trail days are
significant.

(L) represents the absolute search intensity (alcs) for SWR/J mice on PD3, PD7, and P10. In SWR/J
mice, the intensity of search improves with probe trials (Blue horizontal bars, alcs = 1.64E-5 %
2.13E-7 (PD3), alcs = 3.07E-5 = 1.749E-6 (PD7), alcs = 2.29E-5 + 4.36E-7 (PD10)). One-way
ANOVA for absolute search intensity showed the means of the absolute search intensity are
significantly different (F2,25 = 286.7677, p < 0.001). Post hoc analysis established that the

progressive increase seen across the probe trial days is significant.
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Figure 6.2: Other measures to assess spatial memory of BALB/cJ and SWR/J strains of mice.
(A-F) Residence time heat maps.

(G-J) bar graphs quantify the residence time. P4 and Q4 correspond to the target location.

(K-L) bar graphs represent the mean proximity value.

(M-N) bar graphs show the entropy measure.

The data is compared using one-way ANOVA and the means that are significantly different are
indicated in the figure with asterisk (* >0.05, ** >0.01, *** >0.001).
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Figure 6.3: Convergence hotspots detects the memory for old as well as new platform
location in goal reversal task. C57BI/6J and DBA/2J strains of mice were trained with the
platform in the south-west (SW) quadrant on probe day 3 (PD3), whereas the platform was shifted
to the north-east (NE) quadrant on probe day 5 (PD5). Using accuracy (a), uncertainty (6gs), and
intensity of search (I.), we show that C57BI/6J and DBA/2J mice have memory for both platform
locations, whereas the residence time measure shows that on PD5, C57BI/6J mice do not search
in old platform location above chance and that DBA/2J mice did not learn either of the platform
location.

(A) and (C) shows the divergence heat map for the population of C57BI/6J and DBA/2J mice (n =
5). C57BI/6J mice show a distinct peak on PD3 and two peaks on PD5. In contrast, DBA/2J mice
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do not show a convergence peak on PD3 but show two peaks on PD5. We consider both peaks on
PD5 for further analysis and label the peak in NE quadrant/new platform location as Peak#1 and
peak in SW quadrant/ old platform location as Peak#2.

(B) and (D) are the error in divergence contributed by variation within the population. A gaussian

blur (radius = 4.75) was applied for visualising the sampled pixels.

(E) describes the accuracy of search centre for C57Bl/6J on PD3 and PD5. C57BI/6J show a high
degree of accuracy (Solid black bar, a = 86 + 2.8) on PD3. On PD5, the accuracy of Peak#1
measured with respect to the target platform (NE quadrant) (Solid red bar: acs = 86 + 1%), as well
as the accuracy of Peak#2 measured with respect to the conflict platform location (SW quadrant)
(Solid blue bar: acs = 86 £ 1%) is close to maximum. These results indicate that BI6 mice have a
highly accurate and precise spatial memory for both the platform locations, i.e. target location for
PD5 and the conflict location on PD3. One- way ANOVA F2,12 = 0.0034, p > 0.05.

(F) describes the accuracy of search centre for DBA/2J mice on PD3 and PD5. The absence of a
convergence peak on PD3 indicates that DBA/2J do not possess spatial memory for the PD3
platform location. However, on PD5, DBA/2J mice have two search centres as shown in the
convergence heat map. The accuracy of Peak#1 measured with respect to the target platform (NE
quadrant) (Solid red bar: a = 90 £ 3%), as well as the accuracy of the Peak#2 measured with respect
to the conflict platform location (SW quadrant) (Solid blue bar: a = 86 + 3%) is maximum. One- way
ANOVA F15=1.09, p > 0.05. Thus, illustrating the ability of our method to detect and describe the
aspect of spatial memory corresponding to two distinct platform locations. Dashed line shows the
chance accuracy value (64%) in plots (E)-(F). Two-way ANOVA done for comparing the accuracy
on PD5 with strain and peaks (platform locations) as factors showed that the means are not
significantly different and there is no significant interaction (Strain F1,16 = 0.78, p > 0.05, peak: F1,16
= 0.897, p > 0.05, strain x peak interaction: F1,16 = 0.973, p > 0.05.

(G) describes the uncertainty in search for C57Bl/6J. On PD3, the relative search diameter is
(Diagonal black bar) &rs = 4.43 £ 0.15. The relative search diameters of Peak#1 new PL (Diagonal
red bar, drs = 3.45 £ 0.048) and Peak#2 old PL (Diagonal blue bar, &rs = 2.75 = 0.039) are not
statistically different (One-way ANOVA F212 = 85, p < 0.001), thus, the uncertainty in search is
similar for both the platform locations (SW and NE).

(H) describes the uncertainty in search for DBA/2J mice. The relative search diameters of Peak#1
new PL (Diagonal red bar, drs = 4.66 + 0.16) and Peak#2 old PL (Diagonal blue bar, drs = 4.27 +
0.15) are not statistically different (One-way ANOVA F1s = 3.18, p > 0.05), thus, the uncertainty in

search is similar for both the platform locations (SW and NE).

Two-way ANOVA for mean uncertainty on PD5 with strain and peak as two factors showed that
the uncertainty is different across the strain (F116 = 148, p <0.001), and for location of the peaks
(F1.16 = 23, p < 0.001) with no significant interaction(F1,16 = 1.993, p > 0.05). From Post hoc analysis

we see the search diameter is lesser for the older location then the new one reduces the uncertainty
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in search area.

(1) Relative intensity of search shows C57BI/6J mice maximally search at platform location on PD3
(Hatched black bar, 100 + 3%) while on PD5 they search at both the new platform location (Hatched
red bar, 100 £ 1%) as well as the old location (Hatched blue bar, 12.7 + 0.2%). However, the

intensity of search is higher for new location (One-way ANOVA F2,12 = 592, p < 0.001).

(J) Relative intensity of search of DBA/2J mice on PD5. The relative intensity of search for the
platform at the target location (NE) (Hatched red bar, 66 + 2 %) is significantly more than at the
conflict location (SW) (Hatched blue bar, 49 + 2%) (One-way ANOVA F18 = 38, p < 0.001). Thus,
the mice search more intently in the target location, compared to the conflict location as a result of
goal reversal training. We note that intensity of search for the old platform location in DBA/2J is

considerably more compared to the C57BI/6J.

Two-way ANOVA for relative search intensity with strain and peak as two factors show that
difference in means across the strains is not significant :( F1,16 = 0.17, p > 0.05) but mean intensity
of search for the peaks are significantly different (F1.16 = 1127, p < 0.001)with a significant
interaction(F1,16 = 510, p < 0.001) between the factors. Post hoc analysis shows that goal reversal
is complete for C57BI/6J as indicated by lower search intensity for the old platform location while

DBA/2J mice shows significantly more freezing at the old platform location. We estimate the

rICSpew—TICSold

efficiency of goal reversal training as (GRE = ) Thus, a value of 1 would indicate

rIcSnew+TICSy1d
complete goal reversal while -1 would indicate no reversal with zero indicating that there is a conflict.
Here we find this efficiency for C57BI/6J to be ~0.78 and DBA/2J to ~0.15.

(K) and (M) The zone and quadrant residence time measure on PD5 for C57BL/6J mice. Both
measures show that the mice spend significantly more time in the target location, whereas it resides
in the conflict location at chance level. Thus, the residence time-based measures are unable to
detect the presence of spatial memory for the older platform location. (L) and (N) The zone (solid
bar) and quadrant (dotted bar) residence time measure PD5 for DBA/2J mice. DBA/2J mice occupy
the target zone or quadrant at chance level. Thus, the measures are unable to detect the presence
of spatial memory for both platform training locations.

Dashed line represents the chance value (1.11% and 25% respectively) in plots (K)-(N).
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Figure 6.4: Other measures to assess spatial memory of C57BI/6J and DBA/2J strains of
mice trained in goal reversal task.

(A-D) Residence time heat maps.

(E-H) bar graphs quantify the residence time. P4 and Q4 correspond to the target location.

(I-J) bar graphs represent the mean proximity value. Two-way ANOVA for mean proximity with
strain as between-subjects factor and peak as within-subjects factor shows that no significant
difference between any factors with no interaction (strain F124 = 3.61, p > 0.05, peak F224 = 0.749,
p > 0.05, interaction: F224 = 3.27, p > 0.05).

(K-L) bar graphs show the entropy measure. Two-way ANOVA for entropy with strain as between-
subjects factor and peak as within-subjects factor indicate that the means are different across the ,
strains (F224 = 4.441, p < 0.05) but are different for the platform locations as indicated by the peaks
(F224 = 10.97, p < 0.001) with no significant interaction: F2,24 = 5.59, p > 0.05.

The data is compared using one-way ANOVA and the means that are significantly different are
indicated in the figure with asterisk (* >0.05, ** >0.01, *** >0.001).
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CHAPTER 7

Analysis of subtle spatial memory differences in Noonan

Syndrome mouse models using Morris Water Maze task

Abstract

Noonan syndrome (NS) is an autosomal-dominant genetic disorder caused by
mutations in genes of the RAS/MAPK signalling pathway. One of the symptoms of
NS is mild to severe cognitive impairment. Here, we investigate the spatial memory
deficits in mouse models of Noonan syndrome (NS), namely: Ptpn11 D61G/+
(severe manifestation of NS symptoms) and Ptpn11 N308D/+ (mild manifestation
of NS symptoms). Our analysis substantiates the reported differences between the
Ptpon11 D61G/+ Noonan syndrome mice and their wild type littermates in terms of
accuracy and intensity of search. However, we observe that performance of the
NS mutant mice on probe day 5 is similar to that of wildtype (WT) littermates on
probe day 3 in terms of accuracy. Interestingly, while analysing the performance of
mutant mice Ptpn11 N308/+ (mild variant), our method significantly brings out the
difference in memory between the mutant and the wild type littermates, which was
previously undetected using the conventional methods. Thus, we could conduct
rescue experiments and demonstrate the recovery of the spatial memory deficit
using a mitogen activated protein kinase kinase (MEK) inhibitor SL327 in these

mice.
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7.1 Introduction

Noonan syndrome (NS) is a congenital genetic disorder characterised caused by
mutations in the genes of Ras/MAPK signalling pathway (Noonan, 1968; Romano
et al., 2010). The severity of NS symptoms manifest over a wide range such that
mild cases of the disorder are not detected (till the children of such individuals show
the symptoms) as well as severe cases where the quality of life and life expectancy
is affected. The moderate to severe cases of NS show symptoms such as
impairment in growth and development. Mild cognitive impairment has also been
reported. Majority of NS cases are a result of inherited mutated genes, however
cases involving spontaneous mutations have also been reported. The mutated
genes are part of the Ras/MAPK signalling pathway involving genes such as
Ptpn11, SOS1, Ras, CBL. Mutation in Ptpn11 is the most common form of NS.

We focus our investigation on two mouse models of NS mice with a gain-of-function
point mutation in non-receptor protein tyrosine phosphatase Ptpn11 gene: Ptpn11
D61G/+ and Ptpn11 N308D/+ (Araki et al., 2009, 2004). Ptpn11 D61G/+ mutant
mice show severe cognitive deficits whereas Ptpn11 N308D/+ mutants show
milder cognitive deficits. Spatial memory as assessed by MWM established that
Ptpn11 D61G/+ mice do not learn the platform location after three training sessions
(4 trials each) as indicated by quadrant occupancy and proximity measure on the
first probe trial (PD3), whereas the training regime is sufficient for Ptpn11 +/+ mice
to learn the platform location well (Lee et al., 2014). Additional training failed to
improve spatial memory in Ptpn11 D61G/+ mice as reported by quadrant
occupancy and proximity measure on PD7. The study also shows that while Ptpn11
N308D/+ perform similar to wild type littermates as measured by latency, during
probe trial (PD3) these mice spend significantly lesser time in the target quadrant
than wild type mice. Ptpn11 N308D/+ mice also search farther away from the
platform as shown by proximity measure. However, with additional training (PD5),
these mice show comparable spatial memory for the platform location as measured
using quadrant and proximity measure. Lastly, the study showed that
administration of SL327, a MEK inhibitor, is effective in reversing the memory
deficits in Ptpn11 D61G/+ mice.

Here, we evaluate spatial memory of these two NS mouse models using the vector-
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based analysis developed in Chapter 5 and used in Chapter 6.
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7.2 Results

7.2.1 Ptpn11 D61G/+ mice learn platform location comparable to wild type

littermates with additional training

We analyse the dataset of water maze performed on Noonan syndrome mice
Ptpn11 D61G/+ and their wild-type littermates Ptpn11 +/+. Our method of analysis
indicates that though Ptpn11 D61G/+ mice do not have a memory of the platform
location on PD3, additional training does improve their spatial memory for the
platform location. The divergence on velocity vector field along the occupancy
centre reveals a search centre near the platform location on PD5 and PD7 (Fig.
7.1 (C)). Describing the convergence peak or search centre in terms of accuracy
of search, uncertainty about search and intensity of search reveals the quality of
the spatial memory in Ptpn11 D61G/+ during probe trials. The accuracy of the
search centre to the platform location in Ptpn11 +/+ mice is not statistically different
across the probe days (Fig. 7.1 (E), Black solid bars, a =59 + 2.25 (D1), a =93
2.41 (PD3), a =93 £ 2.60 (PD5), a = 96 + 1.34 (PD7)). Interestingly, we see that
the accuracy of the search centre in Ptpn11 D61G/+ mice on PDS5 is comparable
to that of Ptpn11 +/+ mice on PD3 (Fig. 7.1 (F), Red solid bars, a =60 + 2.10 (D1),
a =62 +1.91 (PD3), a =87 + 1.57 (PD5), a =92 + 2.12 (PD7) ; Two-way ANOVA
for accuracy with genotype as between-subjects factor and probe day within-
subjects factor, genotype x probe day interaction: F3,92 = 21, p< 0.001; Bonferroni:
Ptpn11 +/+ PD3 — Ptpn11 D61G/+ PD3: p < 0.001, Ptpn11 +/+ PD3 — Ptpn11
D61G/+ PD5: p > 0.5).

Additionally, the search intensity relative to the pool (rlcs) increases as a function
of training. Ptpn11D61G/+ mice increased their focused searches and their
intention at search centre on PD7, and these are similar to their WT littermates in
this probe trial (Fig. 7.1 (I-d)). However, there is a significant difference in the
absolute intensity of search (alcs) between Ptpn11+/+ and Ptpn11D61G/+ mice
(Fig. 7.1 (K-L)). Absolute intensity at a location in a divergence image measures
the extent by which vector decreases over a unit distance. Given that in our case
the video is uniformly sampled, this measure directly reflects a decrease observed

over time, and hence the velocity. On the other hand, relative intensity measures
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the fraction of slow down with respect to the steepest decline observed in the pool.
Thus, the differences in search intensities (alcs) could reflect either cognitive or
motor deficits, while rlcs differences reflect differences in spatial learning and
memory. The difference we observe in search intensities (ales) in WT and mutants
could be due to the differences in their swimming ability. In contrast, rlcs, accuracy
and uncertainty are sensitive to deficits in spatial learning and memory and are not

directly affected by differences in motor performance.

7.2.2 Spatial memory deficitin MWM is rescued by SL327 drug in N308D/+
mice

Next, we analyse the dataset of water maze performed on Noonan syndrome mice
Ptpn11 N308D/+ and their wild-type littermates Ptpn11 +/+. Noonan syndrome
mice, specifically the swim trajectories of the above Ptpn11 N308D/+ and Ptpn11
+/+ mice on PD5. Additionally, we investigate whether administration of SL327, a
MEK inhibitor, shown to reverse the memory deficits in Ptpn11 D61G/+ mice, could
improve the accuracy and uncertainty in search of the platform location in
PtpnN308D/+ mice. We find there are subtle differences in spatial memory.in terms
of accuracy, uncertainty, and intensity of search between Ptpn11 N308D/+ and
their wild type littermates. Ptpn11 N308D/+ show an accuracy of 80 + 2% with an
uncertainty of 5.5 + 0.16 relative search diameter, whereas the WT mice show an
accuracy of 94 + 2 % with an uncertainty of 4.01 £ 0.092 relative search diameters.
On treatment with SL327, Ptpn11 N308D/+ improves its accuracy to 95 + 2% with
a relative search diameter of 4.33 + 0.074. Incidentally, treating WT mice with
SL327 affects their accuracy and search area, i.e., dcs = 88 + 4 and drs = 5.22 +
0.235 ((Fig. 7.3 (C-E)), Two-way ANOVA for accuracy with genotype as between-
subjects factor and treatment within-subjects factor, genotype x treatment: F1,38
=15, p< 0.001; Bonferroni: Ptpn11 N308D/+ Veh — Ptpn11 N308D/+ SL p < 0.01,
Ptpn11 N308D/+ Veh — Ptpn11 +/+ Veh: p < 0.01).

7.3 Discussion

We utilized the swim trajectories from different mice datasets performing Morris
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water maze task to illustrate the sensitivity and advantage of the newly proposed
metrics. We show our method can detect subtle memory differences previously
undetected using occupancy-based quadrant/platform, proximity, or entropy
measures. Analysing swim trajectories using the proposed metrics enabled us to
detect subtle memory deficits in NS mice performing MWM task. NS mutant mice
Ptpn11 D61G/+ were previously shown not to possess spatial memory of the
platform location even with additional training. However, our analysis reveals that
these mice do learn the platform location with additional training, and that its
accuracy and uncertainty in search area on PD5 is comparable to that of its wild
type littermates on PD3. We also show similar results for a variant of NS mice
Ptpn11 N308D/+ that has subtle memory deficit not detected by the conventional
measure. We see that the administration of SL327 MEK inhibitor rescues memory
deficits seen in Ptp11 N308D/+ mice.
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7.4 Materials and Methods

7.4.1 Animal and behaviour paradigm information

10 male NS mice (Ptpn11 D61G/+) and 15 wild- type littermate (Ptpn11 +/+) were
used for the analyses presented in fig. 7.1 and 7.2. 10 male NS mice (Ptpn11
N308D/+) and 11 wild- type littermate (Ptpn11 +/+) were used for the analyses
presented in fig. 7.3 and 7.4. The NS mice were trained as reported previously (Lee
et al., 2014). Briefly, training sessions comprised 4 trials (2 blocks with 2 trials each)
per day with 1-min inter-trial interval and 45-min inter-block interval. Mice were
allowed to search the platform for 60 s or until reaching the platform. The probe
tests were done immediately after the completion of training on days 3,5, 7. For the
experiments with MEK inhibitor, SL327 (32mg/kg, DMSQO) was injected
intraperitonially everyday 30 min before MWM training.

7.4.2 Generation divergence heat maps and estimated of search centre

Divergence heat maps and the putative search centres were calculated as
developed in chapter 5 (Fig. 5.4, Section 5.5.3, Section 5.5.6).

7.4.3 Estimation of full width half maximum (FWHM) of convergence peak:

We estimate the FWHM of a convergence peak as previously described (2D
Gaussian fitting macro (Fiji/lmaged) for multiple signals. | Blll, n.d.). Briefly, the
identified putative search centre is fit to a linearised 2D-gaussian function to obtain
the FWHM in x- and y-axis. The size of the peak is initialised to 20 pixels before
performing custom fit using ImagedJ’s Curve Fitter class implementing Simplex

algorithm.

7.4.4 Statistical analysis:

All statistical analysis was carried out in Origin (v2020b or 2021b). To perform two-
way ANOVA on summarised statistics (i.e., ANOVA using mean and SEM), the raw
data was recreated for ‘n’ individual mice by randomly sampling from a normal
distribution using the population mean and SD of the metric being analysed. Based

on ANOVA results, post hoc analysis was performed to carry out pair-wise
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comparisons. The data distribution was assumed to be normal. All data are

represented as mean £ SEM.
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7.5 Figures
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Figure 7.1: Description of MWM spatial memory in Ptpn11 D61G/+ and wild type litters mates
(Ptpn11 +/+) using the three parameters accuracy (a), uncertainty (8zs), and intensity of
search (I.) show that with additional training D61G/+ mice recall the platform location with
accuracy and relative search intensity comparable to wild type littermates (PD3).

(A) and (C) are the divergence heat maps showing the convergence hotspots for the population of
Ptpn11 +/+ wild type (WT, n = 15) and Ptpn11 D61G/+ transgenic (D61G, n = 10) mice, respectively,
on training day 1 (D1), probe day 3 (PD3), probe day 5 (PD5) and probe day 7 (PD7). D1 heat map
serves as a representation of the surface when the mouse has no knowledge of the platform
location. After 3 training sessions of 4 trials each, WT mice show a convergence peak close to the
platform location in the first probe trial on PD3, whereas the D61G/+ mice do not show any peak
near the platform. With additional training, D61G show a convergence peak adjacent to the platform
location on PD5 and PD?7 indicating the presence of spatial memory.

(B) and (D) is a visual representation of the error estimates of calculated divergence within a
population of mice for Ptpn11+/+ and Ptpn11 D61G/+ mice respectively. A gaussian blur of radius
2 was applied for visual representation. Pool perimeter is shown as a blue circle and the platform
location is shown as red circle.

(E) and (F) quantify the accuracy of search centre. In both wildtype and mutant mice, the accuracy
of search centre starts at a chance level (61%, dashed line) on D1 (WT: a = 59 + 2.25 (D1, black
solid bars); one-sample t-test, p > 0.05 and D61G/+: a = 60 + 2.10 (D1, red solid bar); one-sample
t-test p > 0.05). In WT mice the accuracy reaches a maximum on PD3 itself (a = 93 + 2.41 (PD3),
a=93+2.60 (PD5),a=96 +1.34 (PD7)). We see that D61G/+ mice perform at chance level when
tested on PD3 (a = 62 +1.91 (PD3, red solid bar); one-sample t-test, p > 0.05). However, with
additional training, the accuracy of search centre improves on PD5 and PD7 (Red solid bars a = 87
+ 1.57 (PD5), a = 92 + 2.12 (PD7); Two-way ANOVA for accuracy with genotype and training as
factors showed that the means across the genotype (F192 =39, p <0.001), as well as across training
day( Fse2 = 97, p<0.001) are different with a significant interaction(Fs,92 = 21, p< 0.001). Post hoc
analysis are consistent with our interpretation provided above. Interestingly, we see that the
accuracy of TG mice on PD5 is comparable to that of WT mice on PD3 (Bonferroni: WT PD3 —
D61G/+ PD3: p < 0.001, WT PD3 — D61G/+ PD5: p > 0.5) indicating that D61G/+ mice are able to
learn the spatial memory task despite their cognitive deficits however with a slow rate of acquisition.
(G) and (H) quantifies the uncertainty in search centre in terms of relative search diameter (drs) for
WT and D61G/+ mice. In both WT (Black diagonal bars, &rs = 2.7 £ 0.103 (D1), &rs = 3.7 £ 0.097
(PD3), drs = 3.7 £ 0.106 (PD5), 6rs = 3.7 + 0.052 (PD7)) and D61G/+ (Red diagonal bars, Ors =
2.7 £0.097 (D1), 6rs = 2.18 £ 0.067 (PD3), drs = 3.3 £ 0.059 (PD5), 6rs = 3.7 £ 0.085 (PD7)) mice,
the relative search diameter was found to be comparable across the three probe trials. Two-way
ANOVA for uncertainty in search with genotype and training as factors showed that the difference
in means across both, the genotype (F192 = 1.78, p > 0.05) and across training day (Fse2 =1.47 , p
> 0.05), is not statistically significant. The interaction between the genotype and training day was

also not statistically significant (F3,02 = 0.996, p > 0.05). This indicates that the search area or focus
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does not change across probe trials.

(I) and (J) quantifies the relative intensity of search (rlcs) for WT and D61G/+ mice. In case of WT
mice, the relative intensity of search at the search centre (Pcs) is high on PD3 itself and reaches a
maximum on PD5 and PD7 (Black hatched bars, rles = 12 £ 1 (D1), rles = 90 £ 9 (PD3), rles = 100 %
11 (PD5), rles = 100 £ 5 (PD7)). In D61G/+ mice, the intensity of search at Pcs steadily improves
from a low value on PD3 to a maximum on PD7 (Red hatched bars, rlcs = 10 £ 1 (D1), rles = 3.8 £
0.26(PD3), rles =40 £ 2 (PD5), rlcs = 100 £ 9 (PD7)). Two-way ANOVA for relative intensity with
genotype and training as factors show that the means are significantly different both as a function
of genotype (F1,92 = 1.3E7, p < 0.001) and training day (F3e2 = 31.3E7, p < 0.001 The interaction
between the two factors was also statistically significant (F3 2 = 4.5E6, p< 0.001). Post hoc analysis
shows that the WT mice learned to search intently on PD3 (D1 < PD3) even though PD5 and PD7
search intensities are higher (PD3 < PD5, PD7) while the mutant mice progressively increased its
search intensity from only after PD3 (D1 ~ PD3), that is intensity of search at PD3 < PD5 < PD7 as
seen from post hoc analysis. The evidence further supports the notion that D61G/+ mutant mice
learn the platform location and contribute its effort at the search centre after intense training.

(K) and (L) quantifies the absolute intensity of search (alcs) for WT and D61G/+ mice. The absolute
intensity of search at Pcs is significantly different on probe days compared to training day in WT
mice (Black horizontal bars, ales = 0.229 + 0.0087 (D1), ales = 0.98 + 0.02548 (PD3), ales = 0.955 +
0.02674 (PD5), ales = 1.072 + 0.01501 (PD7)). In D61G/+ mice, the absolute intensity of search at
Pcs steadily improves with training (Red horizontal bars, alcs = 0.128 + 0.00448 (D1), ales = 0.019
5.89E-4 (PD3), ales =0.175 £ 0.00315 (PD5), ales = 0.285 + 0.00656 (PD7). Both D61G as well as
their littermates are trained and probed on the same experimental setup (with experimenter being
blind to the genotype) as a result the absolute intensities can be compared across genotypes. Two-
way ANOVA for comparing absolute intensity across genotypes and training as two factors indicate
that absolute search intensities are significantly different between WT and D61G mice(F1,92 = 2677,
p < 0.001) and as a function of training they increase (Fs92 = 285, p< 0.001) their intention of search
though at different rates (genotype x probe day interaction: F3 92 = 224, p< 0.001). This we interpret

as resulting from possible motor as well as cognitive deficits.
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Figure 7.2: Other measures to assess spatial memory of Ptpn11 +/+ and Ptpn11 D61G/+ NS
mice.

(A-H) Residence time heat maps.

(I-L) bar graphs quantify the residence time. P4 and Q4 correspond to the target location.

(M-N) bar graphs represent the mean proximity value.

Two-way ANOVA for mean proximity with genotype as between-subjects factor and training within-
subjects factor indicate that differences across genotype: F192 = 16, p < 0.001 and training: F3 o2 =
15, p< 0.001 are significant while , genotype x day interaction: Fsg2 = 0.576, p > 0.05 is not
significant.

(O-P) bar graphs show the entropy measure.

Two-way ANOVA for entropy with genotype as between-subjects factor and training as within-
subjects factor indicate that differences across genotype: F192 = 3.83, p > 0.05, day: F302 = 16, p<
0.001, genotype x day interaction: F3 92 = 0.14, p > 0.05.

The differences in significance are indicated in the figure with asterisk (* >0.05, **>0.01, *** >0.001).
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Figure 7.3: An MEK inhibitor SL327 rescues spatial memory deficits seen in Pipn11 N308D/+

mice.

(A) Divergence heat maps representing the convergence peaks for Ptpn11+/+ WT mice (n=11) and
Ptpn11 N308D/+ mutant mice (n=10) for saline (veh) and drug (SL327) treated conditions.

(B) Heat map of the error estimated on divergence values indicates the variation within the
population of mice. A gaussian blur (radius = 6) was applied for visualising the error in the sampled

pixels.

(C) Accuracy of search centre reveals that Ptpn11 +/+ and Ptpn11 N30D/+ show subtle difference
in spatial memory (Solid bars: Pipn11 +/+ Veh acs = 94 + 2 % (black), Pipn11 N308D/+ Veh acs =
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80 + 2% (red)). Treatment with MEK inhibitor SL327 rescues the deficit and brings the performance
of N308D/+ mutant to the level of WT (Pfpn11 +/+ SL327 acs = 88 + 4 (blue), Ptpn11 N308D/+
SL327 aes = 95 £ 2% (green); Bonferroni: Ptpn11 N308D/+ Veh — Ptpn11 N308D/+ SL p < 0.01,
Ptpn11 N308D/+ Veh — Ptpn11 +/+ Veh: p < 0.01.). Two-way ANOVA for accuracy with genotype
and treatment as two factors established that although there is no difference in the means of
genotype (F13s = 1.6, p > 0.05) and the treatment (F1,3s = 2.4, p > 0.05) however there was
significant interaction (F1,3s = 15, p< 0.001) indicating that the means of these factors are changing
in opposite directions as revealed by the post hoc analysis with the rescue due to SL327 is
significantly higher than the decrement in accuracy seen in the wild type following the administration

of SL327. Dashed line shows the chance accuracy value (61%).

(D) Uncertainty in spatial memory is statistically different between N308D/+ mutant and WT
littermates (Diagonal bars: Ptpn11 +/+ Veh drs = 4.01 £0.092 (black), Ptpn11 N308D/+ Veh &rs =
5.47 £ 0.159 (red); Bonferroni: Ptpn11 N308D/+ Veh — Ptpn11 +/+ Veh: p < 0.001). Administration
of SL327 makes the search focussed for the mutant (Pfpn11 N308D/+ SL327 6rs = 4.33 £ 0.074
(green)), however it also increases the search diameter in the wild type llittermates. (Ptpn11 +/+
SL327 &rs = 5.22 £ 0.235 (blue),). N308D/+ mutant mice improve their performance (Bonferroni:
Ptpn11 N308D/+ Veh — Ptpn11 N308D/+ SL p < 0.001), whereas the search area of their wildtype
littermates becomes more diffused. Two-way ANOVA for uncertainty performed with genotype and
treatment showed significant interaction (genotype x treatment interaction: F13s = 56, p< 0.001),

without any main effect (genotype: F13s = 3.3, p > 0.05, treatment: F1,3s = 0.068, p < 0.05).

(E) The relative search intensities at the search centre are similar in both strains of mice (Hatched
bars: Pipn11 +/+ Veh rles = 96 % 2 (black), Ptpn11 N308D/+ Veh rles = 100 £ 3 (red)). Treatment of
SL327 did not alter the relative intensity contributed to the search centre in case of both strains of
mice (Ptpn11 +/+ SL327 rlcs = 100 £ 5 (blue), Ptpn11 N308D/+ SL327 rlecs = 100 + 2 (green)). Two-
way ANOVA for relative search intensity with genotype and treatment as two factors found no
significant difference among the means nor any significant interaction between the factors.
(genotype: F1,3s = 0.36, p > 0.05, treatment: F13s = 0.36, p > 0.05, genotype x treatment interaction:
F138 = 0.36, p > 0.05).

(F) The absolute intensities measured from these two groups of mice share the same units as they
are carried out on the same setup at the same frame rate. The intensity of search differs in case of
Ptpn11 N308D and its WT littermates (Horizontal bars: Ptpn11 +/+ Veh alecs = 0.65 + 0.015 (black),
Ptpn11 N308D/+ Veh ales = 0.13 + 0.004 (red)).. Treatment of SL327 rescues the deficit seen in
N308D mice such that the treated mice search more intently than that of the vehicle treated mutant
mice. Although SL327 affects the performance of the WT type mice but the direction of change is
opposite to that of the N308D mutant. (Pfpn11 +/+ SL327 aless = 0.43 + 0.019 (blue), Ptpn11
N308D/+ SL327 alcs = 0.44 + 0.007 (green); Bonferroni: Ptpn11 N308D/+ SL — Ptpn11 +/+ SL p >
0.5.) Two-way ANOVA done on the absolute search intensity with genotype and treatment as two

factors showed that means of both the factors( genotype: F1,38 = 1749, p < 0.001, day: F1,3s = 55,
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p< 0.001), as well as interaction is significantly different (F1,3s = 1217, p< 0.001) Post hoc analysis
confirms our earlier interpretation that SL327 rescues the spatial memory deficit seen in N308D
mice although the treated group search intention is still significantly lesser than the wild type vehicle.
We also note that administration of SL327 significantly lowers the search intention in the wild type

animals.
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Figure 7.4: Other measures to assess spatial memory of Ptpn11 +/+ and Ptpn11 N308D/+ NS

mice.
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(A-D) Residence time heat maps.

(E-H) bar graphs quantify the residence time. P4 and Q4 correspond to the target location.

(I) bar graphs represent the mean proximity value. Two-way ANOVA with genotype as between-
subjects factor indicated that mean proximity measure is not statistically different between Ptpn11
+/+ and Ptpn11 N308D/+ strains (genotype: F1.3s = 0.354, p > 0.05), nor across the within-subjects
factor treatment between saline (Veh) and SL327 (drug) groups (treatment: F1,3s = 0.00757, p >
0.05). The ANOVA Main effect for interaction between genotype and treatment is also not (genotype
x treatment interaction: F1,38 = 2.13, p > 0.05).

(J) bar graphs show the entropy measure. Similarly, the two-way ANOVA with genotype as
between-subjects factor and treatment as within-subjects factor, show that the entropy measure
was not statistically different between Ptpn11 +/+ and Ptpn11 N308D/+ as well as saline and SL327
(genotype: F13s = 0.53, p > 0.05, treatment: F13s = 0.45, p > 0.05). The interaction between
genotype and treatment is also not statistically significant (genotype x treatment interaction: F1,38 =
0.277, p > 0.05).

The data is compared using one-way ANOVA and the means that are significantly different are
indicated in the figure with asterisk (* >0.05, ** >0.01, *** >0.001).

Thus, mean proximity and entropy measures are unable to detect the subtle memory deficit, and
its rescue by SL327, in Ptpn11 N308D/+ mutant mice.
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CHAPTER &

Development of optical measures to improve contrast in in vivo
imaging
Abstract

Fluorescence at optical saturation is a function of absorption cross section and
excited state lifetime. Ultrashort pulses used in multi-photon spectroscopy depletes
the ground state population. We reason that the depletion can be modelled and
measured through steady state fluorescence. We developed a method to obtain
fluorescence lifetime from steady state measurements utilizing a conventional
custom built two photon imaging system and established a proof of principle

application of by estimating the lifetime of rhodamine.
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8.1 Introduction

8.1.1 Fluorescence intensity

Fluorescence is the type of emission of light from a substance after light matter
interaction (Lichtman and Conchello, 2005; Lakowicz, 1999). When photons
corresponding to the energy gap between the ground and excited state falls on the
substance, the electrons get excited from the ground state to the excited state such
that the electron in the excited state is paired to the electron in the ground state.
The excited state electron undergoes vibrational relaxation and returns to the
ground state by emitting a photon of lower energy. This is represented in a

Jablonksi diagram (Fig. 8.1).
Fluorescence emissions generally have the following characteristics:

(i) Typically, the emitted fluorescence is of a higher wavelength compared to the
excitation wavelength, a phenomenon known as Stokes shift, allowing for the
spectral wavelength separation of excitation and emission light for a given

fluorophore.

(i) Kasha’s rule states that the emission spectrum is independent of excitation
wavelength. If an electron is excited to higher electronic or vibrational level, due to
the strong overlap of states with similar energy levels, the electron dissipates the

excess energy to rest in the lowest vibrational level of S1.

(iii) Fluorescence lifetime is the time the electron spends in the excited state before

returning to the ground state.

(iv) The ratio of the emitted photon to the absorbed photon gives the quantum yield
of a fluorophore. The higher the quantum yield, the brighter is the emitted

fluorescence.

Both quantum yield and fluorescence lifetime can be influenced by certain factors
(fluorophore quenchers, temperature, polarity, etc), thus these traits can provide

information about the environment of the fluorophore.

Fluorescence intensity measurements can be made using detectors (e.g.
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Photomultiplier tubes (PMT), scientific Complementary metal-oxide—
semiconductor (scMOS)) to generate a contrast enhanced image of a sample
containing fluorophores. However, time resolved measurements can be made to
generate fluorescence lifetime images of a sample that provide information beyond

intensity value or concentration of a fluorophore as discussed in the next section.
8.1.2 Fluorescence lifetime

As mentioned above, when a molecule is excited by a photon of appropriate
energy, it undergoes a chain of photophysical events before returning to the ground
state and emitting a photon of longer wavelength. The fluorescence lifetime of a
molecule is the amount of time it spends in the excited state before returning to
ground state. Since the different photophysical processes are associated with a

certain probability defined by their rate constants, lifetime (r) is calculated as

where T is the decay rate constant, knr is the decay rate constant of all non-radiative
processes. Thus, lifetime of a fluorophore indicates that 63% of the molecules have

returned to ground state before t time point.

Fluorescence lifetime is an intrinsic property of a fluorophore as it is dependent on
the decay rate constants of different photophysical processes leading to
fluorescence emission. Thus, the measured fluorescence lifetime is independent
of different factors such as the excitation wavelength, duration of excitation, mode
of excitation i.e. one-photon or two photons. Lifetime is also independent of the
concentration of fluorophore. Measured lifetime is not affected by photobleaching.
Since lifetime is an intrinsic property of the fluorophore, it is dependent on the
fluorophore structure. Lifetime is also sensitive to the temperature, polarity and
fluorescence quenchers present in its environment. These traits make
fluorescence lifetime an excellent parameter to provide additional information on

the environment of a sample, along with contrast enhancement of a sample.

Fluorescence lifetime requires time-resolved fluorescence measurements which

can be obtained using either time-domain or frequency-domain methods. One of
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the most common methods to measure time-domain measurements uses time-

correlated single-photon counting (TCSPC).
8.1.3 Time Correlated Single Photon Counting

TCSPC works by generating a histogram of the different amounts of time taken
between excitation and emission of a single photon when a sample is excited.
Estimating the exponential decay of the histogram representing the range of
lifetime of the sample provides the average lifetime of the fluorophore. TCSPC
achieves this be detecting the start and stop time of the excitation pulse and the
emitted photon respectively. In principle, a signal is sent to an electronics “clock”,
i.e., constant function discriminator (CFD) which accurately times when the
excitation pulse excites the fluorophore sample. The signal is used to generate a
linear voltage ramp using a time-to-amplitude converter (TAC). Concurrently, the
emitted fluorescence captured by a detector, setup such that a single photon is
detected, signals the CFD which in turn signals the TAC to stop the linear voltage
ramp. The voltage generated is digitized using an analog to digital converter (ADC)
and a value is assigned representing the time taken between excitation and
emission for a single photon by the fluorophore. Thus, by making repeated
measurements, a histogram of decay can be obtained to elucidate the lifetime of a

fluorophore. A schematic of the process is depicted in fig. 8.2.

It is vital that the detector counts single photons during each measurement since
the histogram obtained from single photon counting accurately represents the
decay waveform of a fluorophore. Additionally, modern TCSPC detectors and
electronics require a dead time ranging from a few nanoseconds to microseconds,
which is larger than the lifetime of commonly used fluorophores. Thus, detecting

multiple photons would bias the decay curve to shorter time decay values.
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8.2 Theory

8.2.1 Fluorescence described as a function of pulse in case of a train of

pulses
8.1 Fluorescence as a function of pulses in case of a single pulse train

Initially, all the molecules are in the ground state (ng = Nr1). In response to an
incident or excitation pulse, the molecules get excited from the ground state (|eg>)
to the excited state (Jee>). The fraction of molecules excited from ground state to
excited state in response to a pulse of a particular intensity (1) is given by

_Nrmng 1

o= kf+kb
k1

...Eq.8.1

Nt 2+

We require an expression to describe the number of molecules in the ground state
(ng) as a function of pulse number (Pn) in a pulse train with inter-pulse separation
of tsep. Depending on the relative magnitude of tsep and tr there will be a
progressive depletion of ground state molecules as function of pulse number. This
can be represented as a photophysical reaction. In such case the relationship
between the ground state molecules between two consecutive pulses Pn and Pn+1

can be summarised as below (Eq. 8.2).

K
Ng (Pn) — Ng (Pn+1) ...Eq. 8.2
The rate equation for the Eq. 8.2 is given by
anng(pn) = —Kny(P,) ...Eq. 8.3
Integrating Eq. 8.3 with respect to P, we obtain
ng(B,) = Nr exp(—K(B,)) ...Eq. 8.4

To determine K in Eq. 8.4, we consider the case of ground state molecules at pulse
P+ and P2, where P1 is the first incident pulse, and P2 is the subsequent pulse.

Thus, the difference of ground state molecules is given by
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ng(By) — ng(Ppy1) = ng(By) ocexp(—kfrsep) ...Eq. 8.5
Thus, Kin Eq. 8.4 is given by
K = aexp(—ksTsep) ...Eq. 8.6

The fluorescence emitted by the molecules between pulses Pn and Pn+1, i.e., during
time interval tsep is a result of decay to ground state by the molecule present in the
excited state before the arrival of Pn pulse as well as the molecules getting excited

as a result of Pn pulse. Mathematically, we represent this as

Molecules excited by Pp,

F(B) = f;se” (NT —ng (Pn)) + (ng (Pn)(x) exp(—kft)
Molecules in excited state before P,
...Eq. 8.7
F(B) = (Np —ng(B[1 —a]) (1 - exp(—kft)) ...Eq. 8.8

Using Eq. 8.4 and Eq. 8.6 in Eq. 8.8, we get

F(B) = A(1 — Bexp(—CR,)) ...Eq. 8.9
where
1-— —k
. NT( exp( fTsep)>
ky
B=1-a«a

C=ua exp(—kfrsep)

Now we can integrate Eq. 8.9 between our time interval where we observed the

emitted fluorescence, i.e., 0 to tobs.for tobs >> Tsep

Tobs
Fobs :f F(Pn)dpn
0

B
Fops = A [Tobs - E 1- exp(C Tobs))]
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8.2 Fluorescence as a function of pulses in case of two pulse trains with an

onset delay of time 11

Consider two pulse trains with pulses Pn'and Pn? with a time delay of t1. As derived
in the previous section, the number of molecules in the ground state between two

pulses is given by,

ng(Fy) —ng ()

= ny(P1)ay exp(—kstz)
Term #1: no.of molecules available for Pn2
+ (ng (P,1) —ng(PHay exp(—kfrl))az exp(—kfrz)

Term #2

n
+ z dng P exp(—ks(n — y)1z)
y=1

Term #2 captures the decay of the population of ground state molecules that got

accumulated before the P! pulse. However, for a typical use,

TR s = 12.5ns > 1 = 4.5ns

~ 80 10°

Thus, after two repetition rate duration, we can neglect term #2. Considering the

effects due to one tr duration before tobs,

ng(PY) — ny(P2) = ng(BH) |y exp(—kptr) + (1 — ay exp(—ksTy))a, exp(—ks1;)|
...Eq. 8.10)

We rewrite Eq. 8.10 as,

ng(P) —ng(P?) = ng(Bl) - K where K = a;(1 — ay) exp(—kstz) + oy exp(—kst,)
... Eq. 8.11

Rearranging Eqg. 8.10 and using Eq. 8.11, we get the difference in ground state

molecules as
ang(Pr}) = ng(P1n+1) - ng(Pln)

dng(PL) = —Kny (P ...Eq.8.12
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Solving the differential equation Eq.8.12, we get
ng(Py) = Nrexp(—KP,) ...Eq. 8.13

The fluorescence emitted by a fluorophore on excitation is directly proportional to
the molecules de-exciting from the excited state to the ground state. Thus, the

fluorescence in the interval Pn' and Pn+1" is given by,

F =[Ny —ng(BD](1 — exp(—kstz)) + ng (B ay (1 — exp(—ksTr)) + ng (P oy (1 —
exp(—kst,))(1 — ay exp(—ksty)) ...Eq.8.14

Rearranging Eq.8.14 and replacing t, = 1z — 1, we get the fluorescence from Py’

and Pn+1' as,

F=Ni[1-(1-qap) exp(—KPr})](l — exp(—kaR)) + NTexp(—KPnl)(l —

a, exp(—kfrl))ocz (1 —exp (—kf(rR - Tl))) ... Eq. 8.15

Thus, integrating the total fluorescence emitted in the interval t = 0 and t = Pobs =

T;ﬂ, the time of arrival of the n'" pulse P", we get
R

fOPobsF(PTil) a(PY) = N, [% — % (1 —exp (—K T;’%))] (1 - exp(—kaR)) +

% (1 — exp (—_KTObS)) (1 — 0y exp(_kffl))(l - exp(kfrl) exp(_kaR)) ..-Eq.8.16

TR

Here, @ represents the accumulated fraction of molecules after ‘n’ pulses. Thus,
R
@ < 1 would represent the state before ground state molecules are depleted.
R
Thus, Eq. 8.16 can be approximated to

T

F=Nr{o

T

"zs [1 — oy exp(—ksty) — (1 — ap) exp —kpTr + Z—;(l - exp(—kfrz))]}

...Eq. 8.17

When 22 < 1, then
a1

Fiotal = Nr {0‘1 B2 [1 — o exp(—kpt;) — (1 — o) exp —kftR]} ...Eq.8.18

TR
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8.3 Results and discussion

8.3.1 Fluorescein lifetime

We measured the steady state fluorescence at different pulse delay time points
ranging from 0 — 2000ps using 1000nm fluorescein solution in 1x PBS (pH7.4). In
figure 8.4, the mean fluorescence of the ROI is represented as open circles. The
red solid line is the fit to Eq. 8.18. The goodness of fit was assessed using Adj R-
sq (Adj R-sg > 0.9). Thus, lifetime t was found to be 2.186 £ 1.334 ns.

8.3.2 Rhodamine B lifetime

Similarly, we estimated the lifetime value for Rhodamine B solution. The steady
state fluorescence measurements were obtained for different pulse delay time
points ranging from 0 — 3200ps using rhodamine solution details. In figure 8.5, the
mean fluorescence of 10 images taken for the different pulse-pair delays are
represented as open circles. The red solid line is the fit to Eq. 8.18. The goodness
of fit was assessed using Adj R-sq (Adj R-sq > 0.9). Thus, lifetime t was found to
be 2.1 £ 0.2ns.
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8.4 Discussion

We derived an analytical expression to model fluorescence decay on excitation by
using steady state fluorescence measurements at different dual pulse train delays.
We developed the optical hardware and software setup to obtain the lifetime values
of solutions. We showed a proof of principle of the method using fluorescein and
rhodamine solution.

Fluorescence lifetime imaging (FLIM) is used extensively to address questions in
biology as well as in neuroscience (Yasuda, 2012). Specially designed
fluorescence resonance energy transfer (FRET) pair combinations of acceptor and
donor molecules allow scientists to investigate a variety of molecular and cellular
mechanisms in response to stimuli in cell lines and brain slices as well as in freely
moving and behaving rodents. For example, quantifying FRET fluorescence using
FLIM has been used to understand specific molecular interactions, activation of
kinases in response to dendritic activity, as well as monitoring the levels of
neurotransmitters such as dopamine in reinforcement learning task (Lee et al.,
2021).

However, even with the latest technology to estimate lifetime of a molecule
achieving a high spatial resolution along with a high temporal resolution is not
possible. Studies achieving high temporal resolution capture the overall change in
fluorescence in a region to estimate the lifetime. Such a method loses out on spatial
resolution of the changes happening at the level of individual neurons and even
within neurons. For example, FLIM using optical fibres allow estimation of lifetime
in 1s time windows that can be coupled with the animal performing a behaviour.
On the other hand, studies achieving a high spatial resolution lose out on temporal
resolution. The proof of principle presented in chapter 8 provides a method that
can potentially bridge the compromise between spatial and temporal resolution

when using two-photon FLIM.
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8.5 Materials and Methods

8.5.1 Fluorophores:

The chemicals fluorescein and rhodamine B were obtained from Sigma-Aldrich. 50

nM of Rhodamine B was prepared in ethanol.
8.5.2 Optical setup:

A description of the custom-built optical setup for data collection is presented in
Appendix C3 (Schematic shown in fig. C3). Briefly, a femtosecond pulsed laser
(Tsunami, SpectraPhysics) tuned to the appropriate wavelength (Fluorescein:
760nm, Rhodamine B: 800nm, bandwidth = 15nm) was split into two parts using a
50-50 beamsplitter (ThorLabs: BSW29R). Two retroreflecting prism mirrors, one
fixed on the optomechanical table and the other on the delay line stage placed on
a linear actuator, were used to align the split beams into a collinear path centred
to the microscope objective (Olympus 40xW Cat. no. LUMPLFLN). The delay line

stage allowed varying the inter-pulse interval.

Fluorescence was captured using a monochrome sCMOS camera (Thorlabs
DCC1240M). Appropriate emission filters (Fluorescein: FF01-520/70 along with an
aqueous solution of copper sulphate (IR absorption), Rhodamine B: 2x FFO01-
612/69) were placed in front of the detector to improve the signal to noise ratio.

8.5.3 Data analysis:

Ten image replicates were obtained to calculate the average fluorescence emitted
for each data point (i.e. each delay time point). The mean of the ten images was

used to as the steady state fluorescence value for a given pulse-pair delay.

Curve fitting analysis of steady state fluorescence as a function of excitation time
delays for a selected ROI was carried out in Origin(v2020b)’s user-defined NLFit
function using Levenberg-Marquardt algorithm. The parameters were set as
follows for data fitting at the start of the Levenberg-Marquardt algorithm for least
squares minimisation: Parameter A was set to the fluorescence value at the

shortest time delay or first data point, parameter B was set to the reciprocal or rate
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constant equivalent of the reported lifetime of the fluorophore (in ps), and the
parameter C was set to 0.5. The goodness of fit was determined by the Adj. R-sq.

value.

A custom software written in Java utilizes ImageJ‘s (v52) Curve Fitter class using
Simplex algorithm to generate a lifetime image for a series of input images of
steady-state fluorescence. The software takes a series fluorescence intensity
image at different excitation time delays and performs the fit to Eq. 8.18 for each
pixel. Parameters are initialised as described above before fitting for each pixel,
and obtained lifetime is assessed for goodness of fit based on Adj. R-sq. On

completing the fits, the software outputs a lifetime image of the sample.
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8. 6 Figures
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Figure 8.1: Jablonski diagram.
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Figure 8.2: TCSPC (Time Correlated Single Photon Counting) schematic.
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Figure 8.3: Schematic representation of a pulse pair used for excitation of
fluorophore.

(A) Jablonski diagram showing excitation of the molecule from ground state |g> to
excited state |e> with a rate constant kab (pink solid line). The molecule returns from
excited state to ground state either by spontaneous emission (green solid line) with
rate constant ksp or stimulated emission (green dashed line) with rate constant kst.
Lifetime (t) is the reciprocal Ksp.

(B) A pulse pair comprising of two square pulses (red solid line) of width (tp) and
intensity (lpk) separated by an inter-pulse duration tsep is used to excite a
fluorophore. The excitation pulse pair is divided into four regions (demarcated by
grey dashes): R1, R2, R3 and R4, during which we model the population kinetics

of the fluorophore molecules.
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Figure 8.4: Lifetime measurement fluorescein. The mean fluorescence value of

an ROl is represented as open circles. The red solid line is the fit to Eq. 8.18.
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Figure 8.5: Lifetime measurement Rhodamine B. (A)Left: Intensity image of
fluorescence emitted by Rhodamine B solution. Right: Lifetime image obtained by
calculating the lifetime in each pixel. (B) The mean fluorescence value of an ROI
obtained from 10 images is represented as open circles with error bars

representing SEM. The red solid line is the fit to Eq. 8.18.
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CHAPTER 9

Conclusion

In conclusion, we developed various molecular, optical, and behavioural tools to

address questions related to learning and memory.

Specifically, we developed a novel method to identify, segregate and classify
neurons in response to a behaviour based on their IEG expression profile. We
utilised the method to investigate the contextual representation of two context

retrievals linked in time in the retrosplenial cortex region. (Fig. 9.1 (A))

Next, we developed sensitive measures using velocity vector and its vector field
properties to explain the nature of spatial memory in a navigational task. We utilised
the method to compare performance in MWM of different strains of mice as well as

assess spatial memory deficits in Noonan syndrome mice models. (Fig. 9.1(B))

Lastly, we developed an optical method to measure fluorescence lifetime using

steady state measurements and provided the proof of principle of the method.

Blurred intensity
image

Blurred lifetime
image

Figure 9.1: Conclusion

179






APPENDICIES






Appendix A

Two-photon microscopy

A.1 Introduction

Microscopy is routinely and widely used in biology to study molecular interactions,
physiological mechanisms, structural and functional processes. As described in
Chapter 8, fluorescence microscopy is an invaluable method to enhance image
contrast of fluorescently labelled biological samples. However, fluorescence
microscopy is suitable for certain biological samples, i.e., fixed cells, or thin tissue
sections, where the penetration depth of the excitation light into the sample is small.
With thicker samples, there is larger scattering of incident light and emitted
fluorescence as the light travels through a heterogenous sample with mismatched
refractive indices. Imaging thick tissue sections or live samples would require a
setup such as confocal microscopy where a mechanical pinhole prevent out-of-
focus light from being detected, thus creating optical sections of the sample. The
optically sectioned sample can be reconstructed to give a sharp image of the
sample. Even so, deep tissue imaging, such as cortical layers of the brain, require
the use of non-linear optics to achieve the optimal parameters required for imaging,
i.e., penetration depth, spatial resolution, temporal precision, and excitation and

emission spectra of fluorophore tag.

Non-linear optics or multiphoton microscopy

Multiphoton microscopy refers to fluorophore excitation by more than one photon
of the required wavelength of light. In one photon excitation, the fluorophore
absorbs photon wavelength A with the required energy for the molecule to go from
ground state to excited state. However, in principle, a fluorophore can absorb n
such photons of A/n wavelength, a phenomenon first described by Maria Goeppert-
Mayer in 1931. Such n-photon excitations follow non-linear kinetics, hence is also
known as non-linear optics. In two-photon excitation, the fluorophore can absorb

two photons of half the wavelength, A/2, to excite the molecule. Due to the nature
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of excitation, the focal volume in two-photon excitation is much smaller than one
photon excitation. Thus, there is an inherent optical sectioning effect, which
improves the contrast by reducing out of focus fluorescence light. Additionally, the
use of longer wavelength improves the penetration depth of the excitation light in

thick samples.

A.2 Components of a two-photon microscope

A.2.1 Excitation source: Femtosecond laser

We use the Tsunami laser by Spectra-Physics for the purpose of building a two-
photon microscope. Tsunami is an ultrafast laser femtosecond laser that produces
optical pulses in the range of femtoseconds (fs), i.e., 10-15s. The Tsunami laser
contains a Ti:sapphire rod along with optical elements required for spectral
wavelength amplification in the resonator cavity. A continuous wave (CW) laser,
Millenia Pro, functions as a pump laser to excite and lase the active medium Ti-

Sapphire crystal of the Tsunami laser.

The core of the Tsunami laser is the Ti-Sapphire crystal which is an aluminium
oxide material doped with titanium oxide. On excitation with a pump laser, the Ti3+
ions undergo absorption transitions over the range of 400-600nm, and
fluorescence transitions over the range of 600-1000nm. Thus, optimal lasing action

can be obtained in the tuning range of 670nm — 1000nm wavelength.

Pumping optimization is achieved by longitudinal pumping using a narrow beam
where the Ti-Sapphire rod is aligned colinearly with the laser mode to achieve
overlap within the same volume within the crystal. This alignment ensures that the
gain of the spectral profile is greater than the loss (via mirror surfaces, reflectors,
dispersion control elements, etc) incurred during the roundtrip within the resonator

cavity.

The laser cavity has a folded, ten-mirror configuration to allow a laser path length
to achieve a repetition frequency near 80MHz. While the folded cavity configuration
optimizes for space, the laser beam incident on mirrors at angles other rectilinear
geometry. Thus, concave focusing mirrors are used which introduce astigmatism

in the pump beam which matches the Tsunami cavity mode, ensuring a good beam
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quality.

The required excitation wavelength is selected with the help of a prism pair and
mechanical slit. The laser beam is spatially distributed between two prisms. This
dispersed beam is filtered using a slit to change the wavelength and bandwidth of

the output pulse.

A.2.2 Galvo Scanner

A Galvometer is a precision motor system that rotates a mirror mount in response
to applied current. A galvo scanner system with two motors and two mirrors is
utilised to achieve a point scanning behaviour of an area, i.e. raster scan. In raster
scanning, the first mirror, i.e. fast scanner, moves the beam in the X-axis, and the
second mirror, i.e. slow scanner, moves the beam in the Y-axis, to create a lateral

movement of a 2-D area at the desired focal spot.
A.2.3 Scan lens and tube lens

When creating the focal spot of excitation, the beam must be focussed in two
domains: one with respect to space and another with respect to time. We utilized
the galvanometric mirrors, the scan, and the tube lenses to obtain a stationary

beam in both space and time domain at the back of the objective (Fig. A1).
A.2.4 Multiphoton objectives

The objective lens of a microscope focuses the excitation beam to the focal spot.
Thus, it is vital the objective creates a tight focal spot increase the probability of
two-photon excitation. In case of two-photon microscopy, the excitation and
emission spectra range infrared and visible wavelengths of light, hence the
objective should have a good transmission efficiency for these wavelengths.
Additionally, in vivo imaging of samples requires objectives with long working
distance and high numerical aperture. High numerical aperture improves the
collection efficiency of emitted fluorescence. The numerical aperture also
determines the optical resolution of the image (Section A3.4). Commercially
available multiphoton objectives optimize for these criteria to maximize for

efficiency in two-photon microscopy.
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A.2.5 Detectors

Photon detectors are instruments that detect photons and convert them to electrical
signal via the photoelectric effect. A few types of detectors are briefly described

below:

Array based detectors:

Charge-couple device (CCD) and complementary metal oxide semiconductor
(CMOS) detectors are solid state, integrated circuits consisting of an array of
capacitors. The electronic processing of the light intensity signal at each pixel, i.e.
analog-to-digital conversion, and noise reduction, is carried out on the sensor chip
itself. This results in low noise levels and sensitivity. The use of ICs provides
CCDs/CMOSs high resolution and durability.

Photomultiplier tubes (PMTSs)

Photomultipler tubes (PMT) are sensitive light detectors consisting of a vacuum
tube with a photocathode that converts photons to current by virtue of the

photoelectric effect.
A.2.6 Preamplifier

Current amplifiers strength weak electrical signals to ensure a sturdy and reliable

signal transmission that is resistant to noise.

The SR570 (Stanford Research System) is a low-noise current preamplifier,
providing a voltage output proportional to the input current. The operational
bandwidth (which determines the galvoscanner speed) limits the sensitivity of the

preamplifier.
A.2.6 Digital to Analog Conversion and Data acquisition

A software that generates the analog voltage waveforms to drive the scan mirrors,
acquires the raw data from the photomultiplier tubes (PMTs), and processes these
signals to produce images. We used Scanlmage software (v3.8, Virdo

Technologies) send the signal to generate the analog voltage waveform to the

186



galvo scanner and Ni-DAQ for converting photon signal to an image.

A.3 Description of the custom built two-photon microscope

A.3.1 Overview

The operation of the two-photon microscope carried out for the experiments carried
out in the thesis generally followed the following steps. Tsunami (Spectra-Physics)
femtosecond laser is tuned to the desired wavelength (760-1000nm) with an output
power of 1.2-1.5W. The beam is directed to an inverted microscope (Axio
Examiner.Z1, ZEISS). A dual-axis motor/mirror assembly with gold mirrors galvo
scanner (GVS 102, ThorLabs) is employed for raster scanning of the sample.
Raster scan is achieved by using a saw tooth voltage command waveform
generated by Data Acquisition System (PCI 6110, National Instrument) and
controlled via Scanlmage software (v3.8, Virdri Technologies) on the galvo
scanner. With the use of a scan and tube lens, the laser beam directed to a long
working distance, high NA, water immersion, multiphoton 25x objective
(XLPLN25XWMPZ2, Olympus). The beam size is adjusted to under fill the back focal
plan of the objective (<16mm). A dichroic (FF705-Di01, Semrock) reflects the
emitted fluorescence (<700nm) to the PMTs (PMT H7422-40, Hamamatsu). PMT
is mounted with copper sulphate solution to eliminate infrared spectrum of the
excitation light, and emission filters appropriate for the fluorophore being images

was used to improve signal to noise ratio of detected photons.

Signal from the PMT is amplified using a preamplifier (SR570, Stanford Research
Systems) before using an analog to digital converted (Ni-DAQ, PCI 6110, National

Instruments) to generate an image.
A.3.2 Pulse width calculation

Pulse width calculation:
AEAt > h
4

TT

Replacing E = hvand c = vA, we get
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hAlAt> h
A T 4

Simplify to get

At >
4mcA,

where AA =2, —2; is the bandwidth and A.is the central wavelength of the
bandwidth.

A.3.3 Dwell time calculation

For image acquisition of resolution 1024 x 1024, with a frame rate of 0.2 Hz, the

dwell time on each pixel is calculated below.
Given:

Number of pixels per line = 1024

Number of lines per frame = 1024

Frame rate (Hz) = 0.2

4 ms per line

i.e. 4ms per 1024 pixels

Hence, time spent on one pixel is

4ms/1024 pixels = 0.00390625ms

i.e. 3.9 microseconds for 1 pixel.

Thus, the dwell time is ~4microseconds.
A.3.4 Optical resolution calculation

Olympus 25x multiphoton objective (XLPLN25XWMP2) has the following features:
Magnification: 25x

188



Immersion medium: Water
Numerical Aperture (NA): 1.05
Working distance: 2mm
Objective Field Number:18mm

Refractive index of water (n): 1.33

The Rayleigh criterion specifies the minimum separation between two light sources
that may be resolved into distinct objects. Lateral resolution (l) and axial or depth

resolution (d) are given by

respectively where NA is the numerical aperture, n is the refractive index, A is the
wavelength. Table A1 shows the theoretical values of lateral and axial resolution
for wavelengths of light routinely encountered in the imaging experiments in the
lab.

A.4 Characterisation of the two-photon microscope

A.4.1 Quality of acquired image

After acquiring the image for a given set of imaging parameters, its quality was
assessed for the following. The spatial uniformity of signal detection was carried
out using a homogenous solution. Fig. A2 (A) shows the image acquired for
uniformly illuminated fluorescein solution. A line profile of fluorescence along the
horizontal and vertical axis captures any anomalous variation of fluorescence as a
function of time. For example, non-uniform illumination of sample or detection of
emitted fluorescence will result in a gradation of fluorescence of a homogenous
sample. Similarly, the presence of systematic noise would be indicated as periodic
fluctuations in the profile plots. Such a plot profile can provide information on which
imaging parameter may have to be optimised for improving the quality of the image.
A brief table listing troubleshooting tips is presented in Table A2. In fig. A2 (B) and
(C), the fluorescence detected in the different points in space show uniform

fluorescence.
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A.4.2 Point spread function

Due to the diffraction limit of light, a point object imaged through a microscope
appears as a blur, i.e., the fluorescence signal is spread over several pixels instead
of being localised to one pixel or a point. A point spread function describes the
spatial distribution of the fluorescence of a point object as imposed by the

diffraction limit.

The theoretical PSF, calculated as the lateral and axial resolution, estimates the
resolving power of imaging system (i.e., combination of excitation wavelength,
numerical aperture of objective, refractive index of medium) as shown in
SectionA3.4. However, it is important to calculate the experimental PSF to estimate
the resolving power of an imaging system as it determines, apparent size,

brightness, the quality and resolution of the imaged sample.
A.4.3 Characterisation of two-photon excitation

The following graphs were obtained to characterise the two-photon microscope
built in the lab.

1) Concentration of fluorophore versus fluorescence signal (Fig. A4).
2) Power of excitation beam versus fluorescence signal (Fig. A5).

3) PMT gain versus fluorescence signal (Fig. A6).
A.4.4 Imaging section and ex-vivo mammalian brain

Representative images of samples imaged through two-photon excitation is shown
in figures A7-A9. The two-photon microscope is able to image samples that are
brain sections, as well as ex-vivo and in vivo whole brains. The image resolution is

sufficient to see the spines present on the dendrite of the neurons.
A.5 Materials and Methods

Chemicals and fluorophores:
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200nm yellow-green and 400nm red fluorescent beads (F-8848 Invitrogen) were
used for characterizing the image and data collected on the custom built two-
photon microscope. The sample was prepared by vortexing the vials, mixing beads
with 2% agarose in water, maintaining a 1000 times dilution of the 2% stock

solution. The beads were excited using 750-800nm wavelength.

Fluorescein solution was prepared at the required concentrations (10-1000nM) in
1x phosphate buffered saline (PBS) at pH 7.4.

Brain sample:

Transgenic mice Thy1-GFP (JAX#) or C57BL6 (JAX#) mice infused with tdTomato
virus were used for the experiments described in this section. Mice brains were
extracted via transcardial perfusion. Extracted brains were placed in a solution of
4% formaldehyde for 5 days to crosslink fluorophore. Brains for sectioning were
placed in sucrose solution. 50micron sections were made using a cryostat and

mounted on slides.

Data analysis:

Digitized images stored as TIFF files were analysed using ImageJ (v52) software
to extract mean fluorescence intensity in digital units (D.U.). Linear and non-linear
curve fitting were carried out in Origin(v2020b) using Levenberg-Marquardt
algorithm for minimizing least squares. Plots and graphs were generated in

Origin(v2020b) for presentation.
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A.6 Figures

A Fq | Fy+ Fy |

Galvo

y-mirror /
y

2

Scan lens Tube lens

Objective

/ Galvo

X-mirror

B \ Fy \ Fg+ Fy |

Galvo

\\Mirror
y-mirror
£ ..

1

1

Scan lens Tube lens B,

By

Objective
B

—
/ Galvo Sample
X-mirror

Figure A1: Schematic describing hinge point.

(A) Collimation of excitation in space domain at the hinge point ensures that the
beam is collimated in space and stationary at the objective backfocal plane. The
collimated laser input beam is reflected to scan lens via galvometric mirrors. The
scan lens focuses the beam at its focal point (Fsi)). The tube lens is placed at a
distance of the sum of focal lengths of scan lens and tube lens (Fsi + Fu) from the
scan lens so that beam exiting the tube lens is collimated. The distance between
scan lens and tube lens ensures that the input beam from the galvometric mirrors
is collimated in the space domain at the objective backfocal plane.

(B) Collimation of excitation in time domain at the hinge point ensures that the
beam is stationary at the objective backfocal plane. A stationary collimated beam
(B) incident on the galvo mirror results in different reflected beams (B1, B2) with
respect to time t1, t2 due to the galvo mirror position. Since these input beams B+,

B2 appear to originate from the same incident point (P1), the point appears as a
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point source. The point source in time P1 at a focal distance Fs from scan lens
ensures that the collimated beams B+, B2 focus to form a collimated focal plane in
the time domain at the scan lens. The collimated beam in the time domain consists
of the different reflected beams travels to the tube lens. As it goes through to the
tube lens, the reflected beams (B1, B2) get focused at the focal point of the tube
lens (Fu). The objective backfocal plane coincides with Fu such that each reflected

beam B1, B2 form a focused spot on the plane. Thus, the beam appears stationary.

A Airy disk

In Z axis

Figure A2: Assessment of laser beam alignment for two-photon excitation.
(A) Images of the airy disk at three different z-axis depths. The sharp concentric
rings of the airy disk show the point spread function (PSF) of the image formed at
the focal plane of the objective (using the excitation beam reflected from a glass
slide).

(B) Two photon fluorescence of fluorescein solution seen as a precise focal volume

(indicated by the red arrow).
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Figure A3: The excitation beam uniformly illuminates the solution in the
imaging plane.
(A) Image of fluorescein solution in which the fluorescence was captured via

photomultiplier tube (PMT) detector and digitized using NiDAQ and Scanlmage.
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(B) and (C) show the line profile plots of fluorescence (in D.U.) from fluorescein
solution as a function of position (in pixel) in horizontal and vertical axis

respectively. The line profile plots of the solution indicate that the area is uniformly
illuminated or excited.
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Figure A4: PMT signal as a function of concentration. Signal increases linearly
as a function of fluorophore concentration. The deviation of fluorescence from
linearity at higher concentrations (>500nM) of fluorescein is due to inter molecular
absorption of emitted fluorescence.
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Figure A5: PMT signal as a function of incident power.
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Figure A6: PMT signal to noise as a function of PMT gain. To operate the PMT
in the linear range, it is best to optimise the detect signal between 0.3 and 0.6 gain
for both lower (< 50nM) as well as higher concentration (> 50nM) as determined

using fluorescein solution.
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Figure A7: Two-photon imaging of 40 brain sections.

(A) and (B) show two optical sections of a 40um cortical brain section of Thy1-GFP
mouse. (A) shows a distinct cell body near the top right corner. (B) shows clearly
visible spines across the entire length of the dendrite.

(C) and (D) show two optical sections of a 40pum hippocampal brain section of
mouse infused with tdTomato virus. Due to the high titre of the virus injected, many
hippocampal cells are labelled, making it difficult to see the spines present in the

dendrite of these neurons.
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Figure A8: Two-photon imaging of ex-vivo brain.

(A) An image showing the ex vivo brain embedded in petri plate filled with 2% agar.
(B), (C) and (D) show optical sections from a Thy1-GFP ex vivo brain. (B) and (C)
show a dendrite with spine distinctly visible. (D) shows the presence of a cell body
near the bottom right corner.

(E) and (F) show optical sections from an ex vivo brain infused with virus
expressing tdTomato fluorophore. Both optical sections show dendrites with spines

arising from the same labelled neuron.
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Figure A9: Two-photon in vivo image of the retrosplenial cortex of Thy1-eYFP
transgenic mouse.

(a) An axial optical section showing dendrites visualised through YFP fluorescence
of stochastically labelled neurons. Grey box shows a magnified region of dendrite
with small protrusions called spines (synapses).

(b) A transverse image of the imaged volume showing the length of the neuron
from dendrites at the top, through the axon, to the cell body at the bottom. We can
image to a depth of 600um of the retrosplenial cortex in Thy1-eYFP transgenic

mice.
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Figure A10: Efficiency of bandpass emission filters used for two-photon
imaging of GFP and tdTomato. Dotted green or red lines represent the
fluorophore emission spectra for GFP ((A),(B)) and tdTomato ((D)-(F)) respectively.
Dashed blue line represents the bandpass filter transmission. Solid black line
represents the overlap between the filter transmission and fluorophore emission
spectra. Area under the solid black line represents the filter efficiency for the
fluorophore (reported in %). Dark blue line in (C) represents the transmittance for

Copper sulphate solution, which is used to filter out infrared excitation light
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A.7 Tables

Source Wavelength (nm) | Lateral resolution (nm) | Depth resolution (nm)
Excitation light 780 453.1428571 1881.904762
Excitation light 800 464.7619048 1930.15873
Excitation light 900 522.8571429 2171.428571
Yellow-Green Beads 515 299.1904762 1242.539683
Red Beads 607 352.6380952 1464.507937
Fluorescein 517 300.352381 1247.365079
Rhodamine B 583 338.6952381 1406.603175
GFP 510 296.2857143 1230.47619
tdTomato 580 336.952381 1399.365079

Table A1: Rayleigh criterion for different wavelength of light.

Sr. | Issue

Possible cause

Possible solution

1 Graded fluorescence in

Non-uniform

space.

illumination of sample.

Check input beam alignment

(Input, galvo mirror, scan

lens, tube lens, mirror,

objective backfocal, sample).

in a periodic way.

stray light.

2 Graded fluorescence in | Emitted fluorescence is | Check emission path

space. incompletely captured. | alignment (Sample, dichroic,
collection lens, detector).

3 Bright spots appearing | Systematic noise from | Check that detector s

appropriately shielded from
light of electronics

(Computer screen, torch

light, LCD/LED lights)
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fluorescence values is

right skewed.

OR

Fluorescence values are

saturated.

4 Image appears blurry. | Fluorescence of a pixel | Modify dwell time to match
Fluorescence at a pixel | is spilling over to the | the DAQ digitisation time,
appears as streaks. next causing streaks. e.g., increase dwell time.

5 Histogram of | Electronic saturation. Modify PMT gain to reduce

signal amplification.

OR

Modify SRS settings to
increase the number of signal

bins.

Table A2: Troubleshooting for improving acquired image quality.
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Appendix B

Molecular probes to visualise neuronal structure and

activity.

B.1 Introduction

The molecular probes and viral vectors developed over the course of my PhD
tenure to aid the visualisation of neuronal structure and activity is described in this

chapter.
B.2 Generation of plasmid constructs for in vivo imaging

We designed constructs required for visualising neuron structure as well as exciting
neurons and imaging the resulting calcium activity. These constructs were cloned

into AAV backbone vector and have been packaged into a virus.

The constructs pAAV-CaMKII-GCaMP6f-2A-C1V1 and pAAV-CaMKII-tdTomato
using Addgene plasmid # 51087 (pAAV-CaMKIIGCaMP6-2A-nls-dTomato) and
the gene of interest (GOI), i.e., GCaMP6f-2A-C1V1 or tdTomato. The outline of the
cloning strategy is given in fig. B1. The backbone pAAV-CaMKIl plasmid was
obtained by restriction digestion of Addgene plasmid # 51087 (pAAV-CaMKII-
GCaMP6-2A-nls-dTomato) with BamHI and Hindlll. The size of the pAAV-CaMKI|
backbone is 5049bp.

The GCaMP6f-2A-C1V1 insert of size 2499bp was generated by amplified using
polymerase chain reaction (PCR) using the forward and reverse primers containing
BamHI and Hindlll. After setting a ligation mix of the digested insert and backbone,
the mixture was transformed into DH5 competent cells. The transformed colonies
were screened by colony PCR using the primers specific for the insert GCaMP6f-
2A-C1V1. Colonies that showed a positive band in colony PCR was grown in LB

media and used for plasmid extraction. The isolated plasmid was validated by
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digestion with BamHI and Hindlll restriction enzymes for insert release. Fig. B2 (A)

shows the release of the insert of size 2499bp in lane 4.

The tdTomato insert of size 1499bp was generated by PCR amplification from
CMV-tdTomato plasmid using the forward and reverse primers containing BamHI
and Hindlll. This insert was digested with restriction enzyme BamHI and Hindlll
overnight and purified by gel extraction. The gel purified tdTomato insert and
pAAV-CaMKIl backbone was kept for ligation overnight, transformed into DH5
competent cells and plated on LB agar plates containing ampicillin antibiotic. The
colonies were screened using primers for tdTomato gene. The screen colonies
were validated by digesting the plasmid with BamHI and Hindlll restriction enzymes
(Fig. B2 (B)). The clones were also validated by PCR.

B.3 Virus production of cloned constructs

The expression of the constructs was validated by transfecting the plasmid of
interest into N2a cell line via Lipofectamine transfection. The cells were imaged
after 48 hours to see the expression of the fluorophore. CMV-GFP and CaMKII-
GCaMP6f-2A-dTomato plasmids was used as a control for transfection. For virus
production, the plasmid of interest was co-transfected into HEK293T cell line via
Calcium phosphate transfection with AAV packaging plasmids, pHelper and DJ8.
The cells were imaged after 48 hours to see the expression of the fluorophore.
After 60 hours, the cells were harvested and processed further for virus extraction.
During virus extraction, the cells were harvested and lysed by subjecting the cell
suspension to 5 rounds of freeze/thaw cycles by alternating the tubes between the
dry ice-ethanol bath and the 37°C water bath. The supernatant containing the AAV
viral particles was collected. 40pl of the supernatant was used for viral transfection
into N2a cell line using polybrene. The rest of the supernatant was made into
aliquots and stored at -80°C. Expression of CMV-GFP, CaMKII-tdTomato and

CaMKIIGCaMP6f- 2A-nIls-dTomato was seen three days from viral transfection
(Fig. B3 (A)).

B.4 Virus expression in hippocampus and Retrosplenial

cortex
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Next, the expression of the virus in mouse brain was validated by injecting 2ul of
the viral supernatant into the hippocampus and the retrosplenial cortex.
Fluorophore expression was checked by sacrificing the mouse after 21 days,
extracting and sectioning the brain, and imaging for tdTomato or GFP
fluorescence. Figure B3 (B) and (C) show the expression of the fluorophores

delivered via AAV in the hippocampus and retrosplenial cortex respectively.
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B.5 Figures

RE
BamHI + Hindlll
PCR amplified Gene of .
interest(GOI) RE digested GOI
Ligation
RE pAAV-CaMKII-GOI
BamHI + Hindlll
pAAV-CaMKII- RE digested pAAV-
GCaMP6f-2A-dTomato CaMKIl backbone

Figure B1: Schematic of cloning strategy used to clone pAAV-CaMKII-GCaMP6f-2A-C1V1
and pAAV-CaMKIl-tdTomato. Paav-CaMKII-GCaMP6f-2A-dTomato was digested with BamHI
and Hindlll to create a Pavv-CaMKII backbone. The gene of interest (GOI) was amplified via PCR
using primer with BamHI and Hindlll restriction sites. Both the backbone and GOI after digestion
were mixed in a ligation mixture and transformed into competent cells to obtain plasmids where the

GOl and backbone fused to form the desired construct: pAAV-CaMKII-GOl.
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Figure B2: Restriction digestion confirmed the insertion of GOl in pAAV-CaMKIl backbone.
(A) Left: Schematic representing the elements in pAAV-CaMKII-GCaMP6f-2A-C1V1. Right:
Agarose gel image showing insert release to confirm presence of GOI in cloned plasmid. Lane 1:
1kb DNA ladder, lane 2: Undigested plasmid, lane 3: Linearised plasmid at 7853p, lane 4: Double
digested (BamHI and Hindlll) plasmid showing insert release at 2499bp.

(B) Left: Schematic representing the elements in pAAV-CaMKII-tdTomato. Right: Agarose gel
image showing insert release to confirm presence of GOI in cloned plasmid. Lane 1: 1kb DNA
ladder, lane 2: Undigested plasmid, lane 3: Linearised plasmid at 6528bp, lane 4: Double digested
(BamHI and Hindlll) plasmid showing insert release at 1499bp.

(C) 1kb DNA ladder (NEB) used as reference for DNA band size.
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10x magnification
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Figure B3: Expression of fluorophore delivered via AAV vectors.

(A) Viral infection in N2A cell line with three different fluorophores packaged into AAV vector.

(B) tdTomato fluorophore expression in a section of mouse hippocampus.

(C) GCaMP6f and dTomato fluorophore expression seen in a section of mouse hippocampus (top)

and the retrosplenial cortex (bottom).
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Appendix C

Instrumentation

C.1 Introduction

This chapter contains information on the mechanical, optical, and electronic
instrumentation that were developed over the course of the PhD tenure for use in

different projects related to this thesis as well as on-going projects in the lab.

C.2 Craniotomy for in vivo imaging of retrosplenial cortex

in anesthetised head fixed mice

| carried out craniotomy of transgenic mice to facilitate in vivo imaging of
fluorescently labelled neurons in the retrosplenial cortex in anesthetised, head
fixed mice as previously described (Trachtenberg et al., 2002; Lukasiewicz et al.,

2016). The process is described in detail below.

All surgical tools and glassware used for surgery were autoclaved before use. A
glass bead sterilizer was used to maintain the sterility during and in between
surgeries (30s-1min). The stereotaxic table was sterilized and wiped with 70%
ethanol before the surgery. The mouse was then anaesthetised in an induction
chamber using isoflurane before transferring it to the stereotaxic table with 1.5-2%
isoflurane and 0.3 L/min oxygen (Fig. C1 (A)). A tail pinch response was tested to
ensure that the mouse was fully sedated. Neosporin ophthalmic ointment was
applied on the eyes to maintain the moisture in the cornea and to prevent
contracting eye infection. The mouse was injected subcutaneously with
Dexamethasone to prevent brain swelling. Hair was removed using a trimmer and
the skin was cleaned with Betadine solution followed by 70% ethanol. The skin was
cut using sterilized scissors with the help of forceps exposing the skull. Lidocaine
ointment was used as a topical analgesic during surgery. Using a scalpel, the

periosteum was removed, and the skull was cleaned. The skin was glued onto the
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skull using a cyanoacrylate glue. A sterile 6mm coverglass was positioned over the
skull between the bregma and lambda to mark the region of the cranial window
(Fig. C1 (B)). It was centred at RSC coordinates: AP, bregma -2.8; ML, bregma 0.
A high-speed pneumatic dental drill with a small diameter bur (x 0.6mm, cat #
14961, SS White) was used to outline the 6mm diameter circle. Using sterile saline
dipped swabs and gelfoam, bone dust and occasional bleeding were cleaned.
Once a thin layer of bone was remaining, the bone was carefully removed with fine
forceps by lifting it in an upward direction. Gelfoam soaked in sterile saline was
used to prevent any bleeding. Once the bleeding stopped a coverglass was placed
on the top of the dura in the drilled hole. The edge of the coverglass was attached
to the skull using epoxy glue. The rest of the surgical area was sealed with dental
acrylic. An aluminium head bar to fix the head of the mouse to a tip toe tilt stage
was glued in the front part of the skull (Fig. C1 (C-D)). Any exposed skull region
was covered using dental acrylic. A small well was created around the cranial
window to leave a cavity for holding water (as an immersion medium) for imaging
with a water immersion objective. After the dental acrylic solidified, the mouse was
removed from the stereotaxic table and transferred into a recovery cage. Anti-
inflammatory, analgesics (Carprofen) and antibiotics (TMS) were given for post-
operative care. Two weeks of recovery time was given before using the mice for

an experiment. The implanted cranial window has been stable for up to 3 months.
The dosage of the operative drugs used are listed below.

1. Isoflurane - Inhalation anaesthesia administered during the surgery. 1.5-2%.

2. Neosporin - Topical eye ointment to prevent drying of the eyes.

3. Dexamethasone — Administered subcutaneously to reduce brain swelling.
Concentration: 6mg/kg.

4. Lidocaine - Topical analgesic applied on the skull before drilling.

5. Carprofen —Anti-inflammatory administered subcutaneously post-surgery
during recovery (2-3 days). Concentration: 5mg/kg.

6. Trimethoprimsulfamethoxazole (TMS) — Oral administration of antibiotic

provided in drinking water post-surgery for a week. Concentration: 1mg/ml.

C.3 Alignment software for longitudinal in vivo imaging

210



To facilitate longitudinal in vivo imaging of the same volume of cortex over days, |
designed a software to overlay a real-time video with a reference image. The
software allows the user to compare the unique blood vasculature (seen through
the cranial window on the mouse head) during an imaging session with a previous
or reference image of the veins captured on imaging day 1, to locate the same area

for repeated imaging across days.
The software was written in JAVA and utilises the following libraries:

ij.jar: Imaged v51.
webcam-capture-0.3.12.jar
bridj-0.7.0.jar
slf4j-api-1.7.2.jar

JDK 1.8 (Default)

AN

The software can be utilised on any operating system with JAVA JRE. Video
acquisition can be carried out with a generic webcam compatible with the webcam
capture package (Bartosz Firyn). A link to the software and the source code is

given in Appendix D.

The usage of the software is briefly described as follows. On launching the GUI,
the user must select a web camera from a drop-down menu and click ‘Connect’
button. On successful connection, the status changes to “Connected to camera”.
Next, the user must select the dimensions of the video capture and click ‘Set’
button. The GUI uploaded an appropriate reference image of a grid and the status
changes to “Reference image uploaded”. The user may upload a reference image
of their choice using ‘Load’ button (Status changes to “Reference image uploaded”
when image is successfully uploaded). The user starts the video display by clicking
‘Start’ button under live feed. The GUI displays the video, as well as the video
overlayed on the reference image in the ‘Overlay’ section. The transparency of the
reference image can be modified using the overlay scale bar with overlay set to
zero showing the reference image, and the set to 100 showing the video. The user
can capture a video frame by clicking the ‘Capture’ button. This prompts the user
to select a directory to store the file. ‘Capture’ saves both the video frame as well

as the overlay of the video frame with the reference image in the selected directory.
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To stop the video display, click the ‘Stop’ button.

C4 Optical setup on linear stage for measuring

fluorescence lifetime

In Chapter 8, we developed a novel method to estimate the fluorescence lifetime
from steady state measurements. We derived a theoretical expression to estimate
the number of molecules in the ground state that is available for excitation when a
pulse pair with inter-pulse duration of tsep is incident on the sample. The expression
relates the average fluorescence or steady state measurement from a fluorophore
sample as a function of inter-pulse duration. To experimentally verify the analytical
expression, we required a system that can deliver pulse pairs of excitation beams,
vary the inter-pulse duration of these pulse pairs, and measure the steady state
fluorescence emitted by the excited sample. The following subsections describes
the components built to establish this system for performing the lifetime

experiments with fluorophore solutions as samples.
Description of the optics setup:

The optical setup was designed (Fig. C3 (A)) such that the input pulsed excitation
beam was split into two: a fixed (pump or reference) beam and a delay (probe or
moveable) beam. The beam was split using a 50-50 beamsplitter creating a dual
arm beam path. A fixed path arm and a delay line with varying path length. The
distance travelled by the beam in varying path arm is controlled by optical delay
line consisting of a travelling retroreflective mirror. Increasing the distance of the
retroreflective mirror from the beamsplitter increased the amount of distance
travelled by the delay beam, and thus increased the inter-pulse duration between
fixed and delay beams. The distance of the retroreflective mirror was adjusted with
the use of a linear stage powered by an Arduino microcontroller (described below,
Fig. C3 (B).) The output arm at the beamsplitter, where the fixed and delay beam
join, was sent through an objective to focus and excite a fluorophore solution in a
cuvette. Alignment and spatial overlap of the two beams was assessed using
physical targets at a point close to the beamsplitter and a point farther away (>2m).

The emitted fluorescence was captured using an scMOS camera attached with
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appropriate filters to block the background infrared light Fig. C3 (C).
Description of the electronics:

Arduino boards and their associated expansion shields are open-source
microcontroller kits available for building electronic devices. | used an Arduino
along with a L293D driver shield to control the stepper motor (Nema23 Stepper
Motor Model: 57BYGH56) of the linear stage. A 5V SMPS powers the Arduino
boards and the stepper motor to move the linear stage. The power supply with the
Arduino boards was put together in a control box (Fig. C3 (D)). The control box has
electronics required to control two stepper motors at a time.

The Arduino sketch uses the AFMotor.h library to communicate with the stepper
motor. The user provides input of the distance to be moved through a Java-based
GUI (see next section). Through serial communication interface (i.e., USB), the
information is sent to the Arduino. The Arduino sketch converts the distance
information to the number of steps of the stepper motor as follows:

Given that the step angle is 1.8 deg/step and that 1 turn is 360 deg/ revolution, we
calculate the number of steps per turn as 360/1.8 = 200 steps per revolution. For

a pitch of 5Smm, 1cm linear distance correspond to 400 steps or 2 turns.

At the moment, the code facilitates the command for driving one stepper motor at
a time. The code can be easily modified to incorporate a second stepper motor as

per the requirement of the user. A link to the sketch is given in Appendix D.
Description of the GUI software:

The user operates the linear stage through a GUI written in JAVA (Fig. C3 (E)).
The GUI software utilises jSerialComm-2.5.2 jar library to communicate with the
Arduino through the COM port. The Arduino microcontroller contains the sketch or
code that converts the user commands sent through the GUI to signals for the

appropriate/required movement of the stepper motor to position the linear stage.

The software can be utilised on any operating system with JAVA JRE. A link to the

software and the source code is given in Appendix D.

After the user has uploaded the Arduino sketch/code, as well as setup the GUI
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software, the linear stage can be controlled as given in the following description.
On launching the GUI, the user must connect to the Arduino by clicking ‘Connect’
button. The status changes to “Connected”. Once connected, the user must
initialise the position of the stage using ‘Set zero’ button. This position of the stage
is marked as the origin or reference point for the Arduino to calculate the movement
of the stage. As a good practice, it is best to initialise the stage when it is at one
end and mark that as the origin or reference position. Next, the user must enter the
number corresponding to the desired distance of stage movement in centimetres
and click ‘Go’ button to execute the command. At the end of the usage, it is good
practice to return the stage to the reference position. Then, the user must click

‘Disconnect’ button.

C.5 Assembly of power supply Hamamatsu M13414 to
operate Hamamatsu PMT H7422

We built a two PMT detection system to simultaneously image two fluorophores in
our custom-built two photon microscope system. In the process, we assembled the
power supply, Hamamatsu M13414, required to operate the PMT, Hamamatsu
PMT H7422, as mentioned in the manual. A brief schematic highlighting the main
connections are shown in Fig. C4 (A). Briefly, a 12V AC adapter powers the
M13414 microcontroller board through connector 01. A parallel line with voltage
reduced to 5V powers the different sections in connector 05. Connector 05:3 and
19 powers the peltier and PMT fan. A separate line connected via a switch,
contains connectors 05:7 and 17. Connector 05: 7 powers the PMT, whereas
connector 05: 17 powers external voltage control used to set the gain of the PMT.
Alongside these connections, we added the connections for LED indicators
(through L293D driver) to indicate the status of the PMT (not shown). The
completed connections are shown in Fig. C4 (B), and the finished product is shown
in Fig. C4 (C). Fig. C4 (D) shows the PMT in an operation state, where the LED
lights indicate the following state of the power supply:

1. Green LED — Power supply on.

2. Yellow blinking LED — Peltier not ready.

3. Yellow LED - Peltier ready, PMT can be turned on.

4. Red LED — PMT overload. Switch off PMT, reduce gain.
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5. LCD display — Current PMT gain.
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C.6 Figures

Figure C1: Craniotomy for in vivo imaging of retrosplenial cortex in anesthetised head fixed
mice. (A) An anesthetised mouse placed on a stereotaxic apparatus for precise location of RSc
coordinates.

(B) An image of the exposed skull showing the bregma (black arrow) and lambda (red arrow).

(C) An image of a mouse head with a cranial window implantation. Aluminium head bar attached
using dental cement for restraining the head on the stage for in vivo imaging.

(D) An image showing an anesthetised mouse with the head restraint onto a tip toe tilt stage using

the head bar prior to in vivo imaging.

-"]

Bl

Figure C2: Alignment software for longitudinal in vivo imaging.

(A) A snapshot of the alignment software’s GUI.
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(B) A graticule measuring the field of view to be ~18mm.

(C — D) A section cortex of a Thy1-GFP transgenic mouse as visualised through the alignment

software. (c) showing the GFP positive neurons with the cell body and dendrites. (D) shows the

overlay of the imaged section’s area with a reference grid for proper alignment.

(E — F) A section of hippocampus infused with AAV expressing CaMKII-tdTomato as visualised

through the alignment software. (E) showing the neurons infected with AAV expressing the

tdTomato fluorophore (cell bodies). (F) shows the overlay of the imaged section’s area with a

reference grid for proper alignment.
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Figure C3: Optical setup on linear stage for measuring fluorescence lifetime.

(A) Schematic representation of the optical setup required for measuring fluorescence lifetime using
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steady state fluorescence measurements.

(B) Image of the optical setup showing the beam splitter and delay line.

(C) Alignment of two beams at the back focal plane of the objective visualised on a
marked/calibrated target to ensure the overlap of the pump and probe beams (left). Emitted
fluorescence from fluorescein solution in a cuvette (right).

(D) Assembled microcontroller box consisting of an arduino, L293D driver arduino shield, and a 5V
DC power supply to power, drive, and send commands to the stepper motor to control the linear
stage.

(E) GUI written in JAVA swing for controlling the linear stage.

oo
12v
700 123kQ
CNO1 sV |
0 CNO5:
50 Q 50 Q ? 10kQ
-4 - CNO5:
= 8
CNOS: oy

3,4 — Pel-POW-TTL
7,8 —PMT-POW-TTL
17,18 — Vcont-EXT
19,20 — Fan-POW-TTL

Figure C4: Assembly of power supply Hamamatsu M13414 to operate Hamamatsu PMT
H7422.

(A) Schematic representation of the electronic connections required to power the microcontroller
on M13414 module.

(B) Assembled power supply module with L293D driver for powering indicator LEDs, potentiometer
to control gain (control voltage), and LED screen to indicate the gain (voltage)

(C) External body of the power supply box.

(D) Working PMT power supply showing power ON, peltier ON, and a gain of 0.36.
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Appendix D

Software and Code Book

The software and code book used for data extraction and analysis carried out in
this thesis work is available on the lab Github page -

https://github.com/neurodynamicslab.
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